Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции- учение.docx
Скачиваний:
64
Добавлен:
23.09.2019
Размер:
224.58 Кб
Скачать

7.Поглощенная радиация. Радиационный баланс земной поверхности. Уходящая радиация.

Часть прямой и рассеянной солнечной радиации, поступающей к земной поверхности, ею отражается. Отражательная способность подстилающей поверхности зависит от ее физических свойств, цвета, состояния и характеризуется величиной альбедо.

Альбедо - это отношение отраженной (коротковолновой) радиации Rk к суммарной Q, поступающей на подстилающую поверхность:

Ak = Rk / Q

Альбедо выражается в долях единицы или в процентах. Альбедо для свежевыпавшего снега - 80-95 %, для темных почв - 5-10%.

Земная поверхность, поглощая суммарную солнечную радиацию (коротковолновую), в то же время сама излучает длинноволновую радиацию. Часть этой энергии уходит в мировое пространство и в значительной части поглощается атмосферой. В этом поглощении большое участие принимают водяной пар, озон, углекислый газ, пыль. Радиация, которая поглощается земной поверхностью и идет на нагревание верхних слоев почвы и воды называется поглощенной радиацией. Вследствие поглощения излучения Земли атмосфера нагревается и, в свою очередь, излучает длинноволновую радиацию. Часть этой радиации направлена в сторону земной поверхности. Таким образом, в атмосфере создаются два потока длинноволновой радиации: один из них состоит из излучения подстилающей поверхности и направлен вверх, а другой представляет радиацию атмосферы и направлен вниз. Разность этих двух радиаций называют эффективным излучением подстилающей поверхности Еэф.

Радиационный баланс подстилающей поверхности представляет собой разность между приходом и расходом лучистой энергии. То есть радиационный баланс равен количеству энергии, поглощенной подстилающей поверхностью. В ночные часы, когда суммарная радиация отсутствует, отрицательный радиационный баланс равен эффективному излучению.

Радиационный баланс переходит от ночных отрицательных значений к дневным положительным после восхода Солнца при высоте его 10 - 15°. От положительных значений к отрицательным он переходит перед заходом Солнца при той же его высоте над горизонтом. При наличии снежного покрова радиационный баланс переходит к положительным значениям только при высоте Солнца около 20 - 25о, так как при большом альбедо снега поглощение им суммарной радиации мало. Днем радиационный баланс растет с увеличением высоты Солнца и убывает с ее уменьшением.

Уходящая радиация - длинноволновая радиация земной поверхности, атмосферы и облаков, уходящая в космическое пространство. Ее географическое распределение и изменения во времени определяются, прежде всего, температурой земной поверхности и условиями облачности. При безоблачном небе она наиболее велика над пустынями; минимальной она является в областях плотного облачного покрова с высокой верхней границей.

Лекция 5. Тепловой режим атмосферы

1.Причины изменения температуры воздуха.

Распределение температуры воздуха в атмосфере и непрерывные изменения этого распределения называют тепловым режимом атмосферы. Тепловой режим атмосферы является важнейшей характеристикой климата и определяется прежде всего теплообменом между атмосферным воздухом и окружающей средой.

Теплообмен осуществляется, во-первых, радиационным путем, т.е. при собственном излучении из воздуха и при поглощении воздухом радиации Солнца, земной поверхности и других атмосферных слоев. Во-вторых, теплообмен осуществляется путем теплопроводности – молекулярной между воздухом и земной поверхностью и турбулентной внутри атмосферы. В-третьих, передача тепла между земной поверхностью и воздухом может происходить в результате испарения и последующей конденсации или кристаллизации водяного пара.

Кроме того, изменения температуры воздуха могут происходить независимо от теплообмена, адиабатически. Такие изменения температуры, как известно, связаны с изменениями атмосферного давления, особенно при вертикальных движениях воздуха.

Различают индивидуальные и локальные (местные) изменения температуры. Индивидуальными называют изменения температуры, происходящие в определенном количестве воздуха, сохраняющего свою целостность в процессе движения. Эти изменения происходят вследствие указанных выше процессов. Они характеризуют изменения теплового состояния данного определенного количества воздуха.

Локальными называют изменения температуры в некоторой точке внутри атмосферы с зафиксированными географическими координатами и с неизменной высотой над уровнем моря.

Изменения температуры, связанные с адвекцией – с притоком в данное место новых воздушных масс из других частей земного шара, называют адвективными. Если в данное место притекает воздух с более высокой температурой, говорят об адвекции тепла; если с более низкой – об адвекции холода.