Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
25-36.docx
Скачиваний:
8
Добавлен:
23.09.2019
Размер:
93.47 Кб
Скачать

34.Градуировка, спектроскопы и определение спектров поглощения вещества по градуировочной кривой.

Неоновая лампа является газоразрядным источником света, в котором оптическое излучение возникает при электрическом разряде. Большинство ламп наполняется не чистым неоном, а неоно-гелиевой смесью с небольшой добавкой аргона, чтобы понизить напряжение зажигания. Поэтому свечение ламп имеет оранжево-красный цвет. Широко используется в качестве световых индикаторов напряжения и тока в системах сигнализации, контрольно-измерительной аппаратуре, освещения. Люминесцентная лампа относится к газоразрядным источникам света, световой поток которых определяется свечением люминофоров под воздействием ультрафиолетового излучения разряда. Люминесцентные лампы широко применяются для общего освещения, при этом их световая отдача и срок службы в несколько раз больше, чем у ламп накаливания того же назначения. Наиболее распространённой разновидностью подобных источников является ртутная люминесцентная лампа. Она представляет собой стеклянную трубку, заполненную парами ртути, с нанесённым на внутреннюю поверхность слоем люминофора. При работе люминесцентной лампы между двумя электродами, находящимися в противоположных концах лампы, возникает электрический разряд. Лампа заполнена парами ртути, и поэтому проходящий ток приводит к появлению ультрафиолетового излучения. Ультрафиолетовое излучение преобразуют в видимый свет с помощью люминофора, специального вещества, которое поглощает УФ излучение и выделяет видимый свет. Изменяя состав люминофора можно менять оттенок получаемого света.

35.Упругие, вязкие и вязкоупругие среды, их механические характеристики и модели.

Деформацией называют изменение взаимного положения точек тела при котором меняются расстояния между ними в результате внешнего воздействия. Деформацию называют упругой, если после прекращения действия силы она исчезает. Неупругие деформации являются пластическими.Напряжением называют внутреннюю силу возникающую в деформированном теле под внешним воздействием, отнесенную к площади поперечного сечения тела перпендикулярной силе.

Упругие деформации подчиняются закону Гука, согласно которому напряжение пропорционально относительной деформации:

где Е - модуль упругости, он равен напряжению, возникшему при относительной деформации, равной единице. При односторонней деформации Е называют также модулем Юнга.

Закон Гука обычно справедлив при малых деформациях. Биологические структуры, мышцы, сухожилия, кровеносные сосуды, легочная ткань и др., представляют собой вязкоупругие или упруговязкие системы. То есть их механические свойства, проявляющиеся при действии внешней силы, можно промоделировать сочетанием упругих и вязких элементов (рисунок).Примером чисто упругого элемента служит идеально упругая пружина, в которой процесс деформации подчиняется закону Гука:

где - напряжение;

F- упругая сила, равная внешней силе (нагрузке), которая приложена перпендикулярно к поперечному сечению с площадью “S”;

Е - модуль упругости;

- относительная деформация;

х” и Dх” - исходная длина и её изменение при деформации.

Пример чисто вязкостного элемента - цилиндр с вязкой жидкостью и неплотным поршнем.

36.Механические свойства костной ткани, мышц, сухожилий, сосудов.

Мышцы имеют волокнистое строение. Волокно состоит из 1000-2000 более тонких волокон-миофибрилл диаметром 1-2 мкм. Схема строения саркомера Черные линии - это так называемые Z -линии (Z - диски, имеющие вид линий в продольном сечении). Участок миофибриллы между двумя Z-линиями называется саркомером. Он разделяется на несколько зон. Центральная полоса- А анизотропна и обладает двойным лучепреломлением. К ней примыкают с двух сторон изотропные I-полосы. При растяжении покоящейся мышцы в середине А-полосы появляется зона Н меньшей плотности.Толстые нити образованы белком миозином, тонкие - в основном белком актином. Каждая толстая нить состоит из 180-360 продольно ориентированных молекул миозина, ответственных за анизотропию плотной А-полосы. Менее плотная I-полоса образована тонкими нитями актина, молекулы которого представляют собой двойные спирали (F - форма актина), возникшие в результате полимеризации глобулярного G- актина. В саркоме число G-глобул равно примерно 800 на одну тонкую нить. Тонкие нити F-актина проходят через Z-диски.

Скелетные мышцы состоят из волокон (клеток) и соединительной ткани. Они присоединяется к костям скелета при помощи сухожилий. В веретенообразных мышцах волокна расположены главным образом параллельно друг другу. Каждое волокно окружено тонкой оболочкой (сарколемой), а её внутренность состоит из протоплазмы (сарко-плазмы), в которой расположены тонкие нити (миофибриллы) толщиной до 2 мкм и множество ядер. Мышечные волокна имеют длину до 10 см и толщину около 50 мкм (приближённо равна толщине волоса). Волокна образуют сократительный механизм мышцы. Любой саркомер сокращается приблизительно на 20% или 0,5 мкм.

Сила мышцы на 1 см2 её поперечного сечения называется абсолютной мышечной силой. Для человека она равна от 50 до 100 Н.

Работа мышечной ткани осуществляется благодаря сокращению (укорачиванию с утолщением) миофибрилл, которые находятся в мышечных клетках).Прочность костной ткани должна быть значительной, поскольку она является основным материалом опорно-двигательной системы. Компактная костная ткань обладает специфичным композиционным строением. Она представляет собой среду с пятью структурными уровнями.Из экспериментов установлено, что для костной ткани самым опасным является растягивающее напряжение.

При небольших деформациях для костей справедлив закон Гука: напряжение пропорционально относительной деформации, модуль упругости не зависит от напряжения. Модуль упругости костей может достигать ~ 109 Н/м2, то есть может превышать эффективные модули упругости мышц практически при всех нетравмирующих нагрузках.Принимается, что волокна костной ткани деформируются преимущественно упругим образом, а матрицы (остальная ткань) - пластически и разрушаются хрупким образом. Прочностные деформационные свойства стенок кровеносных сосудов и изменение этих свойств с возрастом имеют большое значение для медицины. Механические свойства кровеносных сосудов обусловливаются главным образом, свойствами средней сосудистой оболочки, состоящей из коллагена, эластина и гладких мышечных волокон. Эластин растягивается очень сильно (допускает деформацию до 200-300%), обладает ярко выраженным нелинейным механическим поведением с переменным модулем упругости от 1 × 105 до 6 × 105 Па. Чистый коллаген растягивается меньше (предельные деформации до 10%) и тоже обнаруживает нелинейное механическое поведение. Его модуль упругости достигает значений от 1 × 107 до 1 × 108 Па, то есть он уже относительно высок.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]