Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
шпоры по грунтам.doc
Скачиваний:
10
Добавлен:
23.09.2019
Размер:
4.58 Mб
Скачать

ОТКАЗ СВАИ

Перемещение сваи от одного удара молотом называется отказом сваи. Отказ сваи определяется при достижении сваей проектной отметки. Используя величину отказа, можно определить несущую способность сваи теоретическим методом.

В маловлажных песчаных грунтах несущая способность свай во времени снижается. Это объясняется тем, что под концом сваи при забивке образуется зона уплотнения (рис.Ф.14.33,а), которая после прекращения процесса забивки сваи уменьшается за счет релаксации напряжений, что и приводит к уменьшению первоначальной несущей способности сваи. Это явление подтверждается контрольной добивкой сваи после отдыха - интервала времени. Отказ до отдыха называется ложным, а отказ после отдыха - истинным. Поэтому в песчаных грунтах величина отказа после отдыха будет больше, чем без отдыха. В глинистых грунтах отказ после отдыха будет меньше, чем до отдыха, так как при забивке сваи происходит разрушение структурных связей, рост гидродинамического давления воды и ее движение по стволу сваи вверх , что играет роль смазки, уменьшая в совокупности несущую способность сваи. После отдыха сваи происходит засасывание сваи в грунт за счет частичного восстановления структурных связей.

Рис.Ф.14.33. Физические явления, сопровождающие забивку свай:

а - образование уплотненной зоны; б - смазка ствола сваи выжимаемой водой

1.3.А. Определение глубины заложения фундамента

При выборе типа и глубины заложения фундамента придерживаются следующих общих правил:

  • Минимальная глубина заложения фундамента принимается не менее 0,5 мот планировочной отметки;

  • Глубина заложения фундамента в несущий слой грунта должна быть не менее 10-15 см;

  • По возможности закладывать фундаменты выше УГВ для исключения необходимости применения водопонижения при производстве работ;

  • В слоистых основаниях все фундаменты предпочтительно возводить на одном грунте или на грунтах с близкой прочностью и сжимаемостью. Если это условие невыполнимо, то размеры фундаментов выбираются главным образом из условия выравнивания осадок.

2. Глубина сезонного промерзания грунта.

Проблема заключается в том, что многие водонасыщенные глинистые грунты обладают пучинистыми свойствами, т.е. увеличивают свой объем при замерзании, за счет образования в них прослоек льда. Замерзание сопровождается подсосом грунтовой воды из ниже лежащих слоев .за счет чего толщина прослоек льда еще более увеличивается. Это приводит к возникновению сил пучения по подошве фундамента. Которые могут вызвать подъем сооружения. Последующее оттаивание таких грунтов приводит к резкому их увлажнению, снижению их несущей способности и просадкам сооружения.

Наибольшему пучению подвержены грунты, содержащие пылеватые и глинистые частицы. К непучинистым грунтам относят: крупнообломочный грунт с песчаным заполнителем, пески гравелистые, крупные и средней крупности, глубина заложения фундаментов в них не зависит от глубины промерзания (в любых условиях).

Рис. Схема морозного пучения основания

df – глубина сезонного промерзания грунтов.

Если d<df – фундамент поднимается.

Надо пройти мощность промерзания грунта и заложить фундамент на большую глубину (в Подмосковье это 1,4 м). d>df

Для малых зданий (дачные постройки) настоящий бич – боковые силы пучения грунта:

Kh – коэффициент, учитывающий тепловой режим подвала здания.

dfn – нормативная глубина сезонного промерзания грунта

Mt – коэффициент, численно равный ∑ абсолютных значений (-) температур за зиму в данном районе.

do– коэффициент, учитывающий тип грунта под подошвой фундамента.

Рис. 10.11. Выбор глубины заложения фундамента в зависимости от конструктивных особенностей сооружения:

а – здание с подвалом в разных уровнях и приямком; б – изменение глубины заложения ленточного фундамента; 1 – фундаментные плиты; 2 – приямок; 3 – трубопровод; 4 – стена здания; 5 – подвал; 6 – ввод трубопровода; 7 – стеновые блоки.

1.3.Б Форма и размер подошвы фундамента

Площадь подошвы предварительно может быть определена из условия:

PII ≤ R, где

PII – среднее давление под подошвой фундамента от основного сочетания расчетных нагрузок при расчете по деформациям;

R – расчетное сопротивление грунта основания, определяемое по формуле СНиП.

Рис. 10.12. Расчетная схема центрально нагруженного фундамента.

Реактивная эпюра отпора грунта при расчете жестких фундаментов принимается прямоугольной. Тогда из уравнения равновесия:

Сложность в том, что обе части выражения содержат искомые геометрические размеры фундамента. Но в предварительных расчетах вес грунта и фундамента в ABCD заменяют приближенно на:

, где

γm – среднее значение удельного веса фундамента и грунта на его уступах; γm=20 кН/м3;

d – глубина заложения фундамента, м.

- необходимая площадь подошвы фундамента.

Тогда ширина подошвы (b):

а) в случае ленточного фундамента; A=b·1п.м.:

б) в случае столбчатого квадратного фундамента; A=b2:

в) в случае столбчатого прямоугольного фундамента:

- задаемся отношением длины фундамента (l) к его ширине (b) (т.к. фундамент повторяет очертание опирающейся на него конструкции).

Отсюда:

в) в случае столбчатого круглого фундамента:

b = D – диаметр фундамента.

После предварительного подбора ширины подошвы фундамента b=f(Ro) необходимо уточнить расчетное сопротивление грунта – R=f(b, φ, c, d, γ).

Зная точное R. Снова определяют b. Действия повторяют, пока два выражения не будут давать одинаковые значения для R и b.

После того. Как был подобран размер фундамента с учетом модульности и унификации конструкций проверяют действительное давление на грунт по подошве фундамента.

Рис.

Чем ближе значение PII к R, тем более экономичное решение.

Этой проверкой мы проверяем возможность расчета по линейной теории деформации грунта.

Если условие не соблюдается, тогда расчет необходимо вести по нелинейной теории, что значительно его осложняет.