
- •Дискретные случайные величины
- •2) Дискретная биномиальная случайная величина(биномиальное распределение). Закон распределения данной дискретной случайной величины запишется следующим образом:
- •3) Дискретная случайная величина Пуассона(пуассоновское распределение с параметром ). Закон распределения дискретной случайной величины Пуассона задается следующим образом:
- •4) Дискретная геометрическая случайная величина (геометрическое распределение). Закон распределения геометрической дискретной случайной величины имеет вид
- •Непрерывные случайные величины
- •Примеры непрерывных случайных величин:
- •3) Равномерная на [a;b] непрерывная случайная величина(равномерное на отрезке [a;b] распределение).
- •Свойства функции распределения:
- •§3. Числовые характеристики дискретной случайной величины.
- •Свойства математического ожидания:
- •Свойства дисперсии:
Свойства функции распределения:
1)0≤ F(x) ≤1;
2) F(x)- неубывающая функция на (-∞;+∞);
3) F(x)- непрерывна слева в точках х= xi(i=1,2,…n) и непрерывна во всех остальных точках;
4) F(-∞)=Р (Х<-∞)=0 как вероятность невозможного события Х<-∞,
F(+∞)=Р(Х<+∞)=1 как вероятность достоверного события Х<-∞.
Если закон распределения дискретной случайной величины Х задан в виде таблицы:
-
x
x1
x2
х3
…
хn
p
р1
р2
р3
...
рn
то функция распределения F(x) определяется формулой:
0 при х≤ x1,
р1 приx1< х≤ x2,
F(x)= р1 + р2 при x2< х≤ х3
… … …
1 при х> хn.
Её график изображен на рис.2:
рис.2
§3. Числовые характеристики дискретной случайной величины.
К числу важных числовых характеристик относится математическое ожидание.
Определение: Математическим ожиданием М(Х)дискретной случайной величины Х называется сумма произведений всех ее значений на соответствующие им вероятности:
n
М(Х)=∑ xiрi=x1р1 + x2р2+…+ xnрn
i=1
Математическое ожидание служит характеристикой среднего значения случайной величины.
Свойства математического ожидания:
1)M(C)=C, где С-постоянная величина;
2)М(С•Х)=С•М(Х),
3)М(Х±Y)=М(Х) ±M(Y);
4)M(X•Y)=M(X) •M(Y), где X,Y- независимые случайные величины;
5)M(X±C)=M(X)±C, где С-постоянная величина;
Для характеристики степени рассеивания возможных значений дискретной случайной величины вокруг ее среднего значения служит дисперсия.
Определение:Дисперсией D(X)случайной величины Х называется математическое ожидание квадрата отклонения случайной величины от ее математического ожидания:
D(X)=M(X-M(X))2
Свойства дисперсии:
1)D(C)=0, где С-постоянная величина;
2)D(X)>0, где Х- случайная величина;
3)D(C•X)=C2•D(X), где С-постоянная величина;
4)D(X+Y)=D(X)+D(Y), где X,Y- независимые случайные величины;
Для вычисления дисперсии часто бывает удобно пользоваться формулой:
D(X)=M(X2)-(M(X))2,
n
где М(Х)=∑ xi2рi=x12р1 + x22р2+…+ xn2рn
i=1
Дисперсия D(X) имеет размерность квадрата случайной величины, что не всегда удобно. Поэтому в качестве показателя рассеяния возможных значений случайной величины используют также величину √D(X).
Определение:Средним квадратическим отклонением σ(Х) случайной величины Х называется квадратный корень из дисперсии:
Задача №2. Дискретная случайная величина Х задана законом распределения:
-
х
-1
0
1
2
3
р
0,1
Р2
0,3
0,2
0,3
Найти Р2, функцию распределения F(x) и построить ее график, а также M(X),D(X), σ(Х).
Решение: Так как сумма вероятностей возможных значений случайной величины Х равна 1, то
Р2=1- (0,1+0,3+0,2+0,3)=0,1
Найдем функцию распределения F(х)=P(X<x).
Геометрически это равенство можно истолковать так: F(х) есть вероятность того, что случайная величина примет значение, которое изображается на числовой оси точкой, лежащей левее точки х.
Если х≤-1, то F(х)=0, т.к. на (-∞;х) нет ни одного значения данной случайной величины;
Если -1<х≤0, то F(х)=Р(Х=-1)=0,1, т.к. в промежуток (-∞;х) попадает только одно значение x1=-1;
Если 0<х≤1, то F(х)=Р(Х=-1)+ Р(Х=0)=0,1+0,1=0,2, т.к. в промежуток
(-∞;х) попадают два значения x1=-1 и x2=0;
Если 1<х≤2, то F(х)=Р(Х=-1) + Р(Х=0)+ Р(Х=1)= 0,1+0,1+0,3=0,5, т.к. в промежуток (-∞;х) попадают три значения x1=-1, x2=0 и x3=1;
Если 2<х≤3, то F(х)=Р(Х=-1) + Р(Х=0)+ Р(Х=1)+ Р(Х=2)= 0,1+0,1+0,3+0,2=0,7, т.к. в промежуток (-∞;х) попадают четыре значения x1=-1, x2=0,x3=1 и х4=2;
Если х>3, то F(х)=Р(Х=-1) + Р(Х=0)+ Р(Х=1)+ Р(Х=2)+Р(Х=3)= 0,1+0,1+0,3+0,2+0,3=1, т.к. в промежуток (-∞;х) попадают четыре значения x1=-1, x2=0,x3=1,х4=2 и х5=3.
Итак,
0 при х≤-1,
0,1 при -1<х≤0,
0,2 при 0<х≤1,
F(x)= 0,5 при 1<х≤2,
0,7 при 2<х≤3,
1 при х>3
Изобразим функцию F(x)графически (рис.3):
рис. 3
Найдем числовые характеристики случайной величины:
n
М(Х)=∑ xκрκ =x1р1 + x2р2+…+ xnрn
κ=1
M(X)=-1•0,1+0•0,1+1•0,3+2•0,2+3•0,3=1,5
n
D(X)= ∑ x2κрκ –(M(X))2 = x21р1 + x22р2+…+ x2nрn–(M(X))2
κ=1
D(X)=(-1)2 •0,1+12•3+22•0,2+32•0,3-(1,5)2=1,65
≈1,2845.
Функция распределения случайной величины: вычисление, свойства. Вероятность попадания случайной величины в заданный интервал
Непрерывная случайная величина и ее законы распределения: плотность распределения вероятностей, ее свойства; нахождение функции распределения по известной плотности распределения.
Нормальное распределение. Правило трех сигм.
Числовые характеристики непрерывной случайной величины: математическое ожидание, дисперсия, среднее квадратическое отклонение