- •Курс лекций «Вычислительные машины, системы и сети»
- •Часть 1. Вычислительные машины. 3
- •Часть 2. Вычислительные системы. 202
- •1.3 Материнская плата
- •1.4 Процессор
- •1.5 Устройства хранения данных
- •Лекция 2. Эволюция микрокомпьютеров.
- •1.1.Основные направления эволюции микрокомпьютеров.
- •Лекция 3. Машинная организация процессора 80286
- •1.1. Введение.
- •2.2. Структура памяти.
- •2.3. Сегментация памяти.
- •2.4. Структура ввода-вывода.
- •2.5. Регистры.
- •Лекция 4. Операнды и режимы адресации операндов.
- •Лекция 5. Общая организация памяти.
- •Лекция 6. Прерывание микропроцессора в эвм.
- •Организация обработки прерываний в эвм
- •Цепочечная однотактная система определения приоритета запроса прерывания
- •Обработка прерываний в персональной эвм
- •Лекция 7. Последовательный интерфейс rs–232c.
- •Общие сведения о интерфейсе rs–232c
- •Виды сигналов
- •Тестовое оборудование для интерфейса rs–232c
- •Лекция 8. Последовательный интерфейс сом-порт.
- •Использование сом-портов
- •Функции bios для сом-портов
- •Сом-порт и РпР
- •Лекция 9. Программируемый связной интерфейс.
- •Лекция 10. Передача данных между эвм с помощью модемов. Типы и характеристики модемов.Набор ат-команд.
- •Ат-команды
- •Лекция 11. Программируемый периферийный интерфейс.
- •Лекция 12. Параллельный интерфейс:lpt-порт. Понюхов е. В.
- •Интерфейс Centronics
- •Сигналы интерфейса Centronics
- •Традиционный lpt-порт
- •Функции bios для lpt-порта
- •Расширения параллельного порта
- •Физический и электрический интерфейс
- •Режимы передачи данных
- •Полубайтный режим ввода — Nibble Mode
- •Конфигурирование lpt-портов
- •Использование параллельных портов
- •Неисправности и тестирование параллельных портов
- •Лекция 13. Программируемые таймеры и счетчики событий.
- •Лекция 14. Универсальная последовательная шина usb.
- •2.Шина usb.Общая характеристика.
- •Структура usb
- •3.Физический интерфейс
- •Протокол
- •Устройства usb - функции и хабы
- •Хост-контроллер
- •Лекция 15. Протокол работы usb-шины.
- •Описание протоколов используемых при передаче данных Структура usb пакета
- •Поля usb пакета
- •Типы usb пакетов
- •Приоритеты передач по usb-шине
- •Источники информации
- •Лекция 16. Интерфейс ieee-1394 (FireWire).
- •Технические характеристики
- •Топология шины
- •Пример топологии ieee-1394
- •Совместимость
- •Кабели и разъемы
- •Список литературы
- •Лекция 17. Организация прямого доступа к памяти.
- •Лекция 18. Устройства ввода эвм. Клавиатура. Введение
- •1. Основные части клавиатуры
- •1.1. Клавиши пишущей машинки (алфавитно-цифровая клавиатура)
- •Режимы ввода символов
- •Названия специальных знаков
- •1.2. Служебные клавиши
- •Индикаторы режимов
- •Клавиши управления курсором
- •1.3. Функциональные клавиши
- •1.4. Малая цифровая клавиатура
- •2. Принципы работы клавиатуры
- •Лекция 19. Интерфейс эвм с видеотерминалом. Видеоадаптер. Режимы изображений: текстовый и графический режимы. Видеопамять. Анимация изображений. Интерфейс эвм с видеотерминалом.
- •Видеоадаптер.
- •Лекция 20. Накопитель магнитных дисков: гибкий и жесткий. Структура дисков: дорожки, сектора, блоки. Обмен информации между эвм и магнитными дисками.
- •Лекция 21. Сканер. Считывание изображения. Типы обрабатываемых изображений. Качество изображения.
- •Лекция 22. Назначение и функции операционной системы.
- •Часть 2. Вычислительные системы. Лекция 23. Классификация систем параллельной обработки данных.
- •Сеть с топологией кольцо
- •Литература
- •Лекция 24. Классификация мультипроцессорных систем по способу организации основной памяти.
- •Лекция 25. Обзор архитектур многопроцессорных вычислительных систем.
- •Лекция 26. Направление развития в высокопроизводительных вычислительных системах.
- •Универсальные системы с фиксированной структурой
- •Направления развития микропроцессоров
- •Системы с фиксированной структурой из серийных микропроцессоров
- •Специализированные системы с фиксированной структурой
- •Специализированные системы с программируемой структурой
- •Технологическая база развития современных архитектур
- •Архитектуры многопотоковых процессоров
- •Кластер Green Destiny
- •Программируемый микропроцессор
- •Однородные вычислительные среды
- •Литература
- •Однокристальный ассоциативный процессор сам2000
- •Литература
- •Однокристальный векторно-конвейерный процессор sx-6
- •Литература
- •Лекция 27. Принципы построения телекоммуникационных вычислительных систем.
- •2.Компоненты телекоммуникационной системы
- •3. Типы телекоммуникационных сетей.
- •4. Топологии вычислительной сети.
- •5. Модем
- •Часть 3. Вычислительные сети. Лекция 28. Эталонная модель взаимодействия открытых систем.
- •Лекция 29. Локальные вычислительные сети.
- •10Base-2 или тонкий Ethenet
- •10Base-5 или толстый Ethenet
- •2.2.2. Компоненты сети
- •2.2.3. Проводная сеть в умном доме(LexCom Home)
- •Лекция 30. Беспроводные сети на основе службы gprs.
- •Чем привлекательна эта технология?
- •Передача данных: gprs и gsm
- •Что дает абоненту технология gprs?
- •Принципы построения системы gprs
- •Терминальное оборудование gprs
- •Скорости передачи в системе gprs
- •Перспективы развития услуг на базе gprs
- •Перспективы пакетной передачи данных
- •Gprs модемы существуют в нескольких исполнениях:
- •Лекция 31. Беспроводные сети Radio-Ethernet.
- •Заключение
- •Лекция 32. Беспроводные локальные сети на основе Wi-Fi - технологии. Введение.
- •Архитектура, компоненты сети и стандарты
- •Организация сети
- •Физический уровень ieee 802.11
- •Канальный уровень ieee 802.11
- •Типы и разновидности соединений
- •2. Инфраструктурное соединение.
- •4. Клиентская точка.
- •5. Соединение мост.
- •Список использованной литературы:
4. Топологии вычислительной сети.
Топология типа звезда.
Концепция топологии сети в виде звезды пришла из области больших ЭВМ, в которой головная машина получает и обрабатывает все данные с периферийных устройств как активный узел обработки данных. Этот принцип применяется в системах передачи данных, например, в электронной почте RELCOM. Вся информация между двумя периферийными рабочими местами проходит через центральный узел вычислительной сети.
Пропускная способность сети определяется вычислительной мощностью узла и гарантируется для каждой рабочей станции. Коллизий (столкновений) данных не возникает.
Топология в виде звезды является наиболее надежной из всех топологий вычислительных сетей, поскольку передача данных между рабочими станциями проходит через центральный узел (при его хорошей производительности) по отдельным линиям, используемым только этими рабочими станциями.
Кольцевая топология.
При кольцевой топологии сети рабочие станции связаны одна с другой по кругу, т.е. рабочая станция 1 с рабочей станцией 2, рабочая станция 3 с рабочей станцией
4 и т.д. Последняя рабочая станция связана с первой. Коммуникационная связь замыкается в кольцо.
Прокладка кабелей от одной рабочей станции до другой может быть довольно сложной и дорогостоящей, особенно если географически рабочие станции расположены далеко от кольца (например, в линию).
Основная проблема при кольцевой топологии заключается в том, что каждая рабочая станция должна активно участвовать в пересылке информации, и в случае выхода из строя хотя бы одной из них вся сеть парализуется.
Специальной формой кольцевой топологии является логическая кольцевая сеть. Физически она монтируется как соединение звездных топологий.
Шинная топология.
При шинной топологии среда передачи информации представляется в форме коммуникационного пути, доступного дня всех рабочих станций, к которому они все должны быть подключены. Все рабочие станции могут непосредственно вступать в контакт с любой рабочей станцией, имеющейся в сети.
Рабочие станции в любое время, без прерывания работы всей вычислительной сети, могут быть подключены к ней или отключены. Функционирование вычислительной сети не зависит от состояния отдельной рабочей станции.
В стандартной ситуации для шинной сети Ethernet часто используют тонкий кабель или Cheapernet-кaбeль с тройниковым соединителем. Выключение и особенно подключение к такой сети требуют разрыва шины, что вызывает нарушение циркулирующего потока информации и зависание системы.
Древовидная структура ЛВС.
Наряду с известными топологиями вычислительных сетей кольцо, звезда и шина, на практике применяется и комбинированная, на пример древовидна структура. Она образуется в основном в виде комбинаций вышеназванных топологий вычислительных сетей. Основание дерева вычислительной сети располагается в точке (корень), в которой собираются коммуникационные линии информации (ветви дерева).
Вычислительные сети с древовидной структурой применяются там, где невозможно непосредственное применение базовых сетевых структур в чистом виде. Для подключения большого числа рабочих станций соответственно адаптерным платам применяют сетевые усилители или коммутаторы. Коммутатор, обладающий одновременно и функциями усилителя, называют активным концентратором.