Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Prakticheskaya_Metrologia_poslednyaya_redaktsia...doc
Скачиваний:
13
Добавлен:
22.09.2019
Размер:
1.48 Mб
Скачать

Модуль№2. Классификация измерений

Комплексная цель модуля:

Изучить принципы, виды и методы измерений, что крайне необходимо для дальнейшего поиска источников погрешностей и оценок их характера. Изучить качественные характеристики измерений, что в дальнейшем обеспечит близость к нулю систематических погрешностей в их результатах.

Измерение физической величины – совокупность операций по применению технического средства, хранящего единицу физической величины, обеспечивающих нахождение соотношения (в явном или неявном виде) измеряемой величины с ее единицей и получение значения этой величины .

Основное уравнение измерения физической величины можно записать в виде

Q = Nq,

где Q – измеряемая физическая величина;

q – единица физической величины;

N – числовое значение физической величины, которым определяется соотношение измеряемой физической величины и единицы, использованной при измерениях.

Из уравнения измерения следует, что в основе любого измерения лежит сравнение исследуемой физической величины с аналогичной величиной определенного размера, принятой за единицу. Суть измерения состоит в определении числового значения физической величины. Этот процесс называют измерительным преобразованием, подчеркивая связь измеряемой физической величины с полученным числом. Конечной целью преобразования является получение числа, с помощью которого определя-ют соотношение измеряемой физической величины и единицы этой величины.

Измерительное преобразование всегда осуществляется с использова-нием некого физического закона или эффекта, который рассматривают как принцип, являющийся основой измерения.

Принцип измерений – физическое явление или эффект, положенное в основу измерений.

Например, измерение температуры с помощью термопары (исполь-зование термоэлектрического эффекта); измерение массы взвешиванием на пружинных весах (определение силы тяжести, которая пропорциональна искомой массе, основано на принципе пропорционального упругого растяжения) и др.

Поскольку принципы измерений связаны с измерительными преобра-зованиями, то можно говорить о средствах измерений, построенных на механических, оптических, электрических, пневматических, гидравли-ческих, магнитных и других, в том числе и комбинированных принципах преобразования измерительной информации, чем фактически определя-ются принципы измерений при использовании этих средств.

Область измерений – совокупность измерений физических величин, свойственных какой-либо области науки или техники и выделяющихся своей спецификой.

Выделяют ряд областей измерений: механические, магнитные, акустические и др.

Вид измерений - часть области измерений, имеющая свои особенности и отличающаяся однородностью измеряемых величин.

Примеры видов измерений: измерения электрического сопротивления, электродвижущей силы, электрического напряжения, магнитной индукции, относящиеся к области электрических и магнитных измерений.

Подвид измерений – часть вида измерений, выделяющаяся особен-ностями измерений однородной величины (по диапазону, по размеру величины и др.).

Примеры подвидов: измерения больших длин, имеющих порядок десятков, сотен, тысяч километров или измерения сверхмалых длин — толщин пленок как подвиды измерений длины.

Более широкая трактовка видов измерений, рассматривает следующие альтернативные пары терминов:

- прямые и косвенные измерения,

- совокупные и совместные измерения,

- абсолютные и относительные измерения,

- однократные и многократные измерения,

- статические и динамические измерения,

- равноточные и неравноточные измерения.

Прямые и косвенные измерения различают в зависимости от способа получения результата измерений.

Прямое измерение – измерение, при котором искомое значение ФВ получают непосредственно по устройству отображения измерительной информации применяемого СИ.

Формально без учета погрешности измерения они могут быть описаны выражением

Q = х,

где Q – измеряемая величина,

х – результат измерения.

Косвенное измерение – определение искомого значения ФВ на основании результатов прямых измерений других ФВ, функционально связанных с искомой ФВ.

Формальная запись такого измерения

Q = F (X, Y, Z,…),

где X, Y, Z,… – результаты прямых измерений.

Принципиальной особенностью косвенных измерений является необходимость обработки (преобразования) результатов вне прибора (на бумаге, с помощью калькулятора или компьютера), в противоположность прямым измерениям, при которых прибор выдает готовый результат. Классическими примерами косвенных измерений можно считать нахождение значения угла треугольника по измеренным длинам сторон, определение площади треугольника или другой геометрической фигуры, определение плотности материала твердого тела по результатам прямых измерений массы т, высоты h и диаметра цилиндра d, связанных с плотностью уравнением

ρ = т/0,25π d2 h

Прямые и косвенные измерения характеризуют измерения некоторой конкретной одиночной физической величины. Измерение любого множества физических величин классифицируется в соответствии с однородностью (или неоднородностью) измеряемых величин. На этом и построено различение совокупных и совместных измерений.

Совокупные измерения – проводимые одновременно измерения нескольких одноименных величин, при которых искомые значения величин определяют путем решения системы уравнений, получаемых при измерениях этих величин в различных сочетаниях.

Совместные измерения – проводимые одновременно измерения двух или нескольких неодноименных величин для определения зависимости между ними.

В качестве примера можно рассмотреть одновременные измерения длин и температур для нахождения температурного коэффициента линейного расширения. В более узкой трактовке совместные измерения подразумевают измерение нескольких неодноименных величин (X, Y, Z и т.д.). Примерами таких измерений могут быть комплексные измерения электрических, силовых и термодинамических параметров электродви-гателя, а также измерения параметров движения и состояния транспортно-го средства (скорость, запас горючего, температура двигателя и др.).

Для отображения результатов, получаемых при измерениях, могут быть использованы разные оценочные шкалы, в том числе градуированные в единицах измеряемой физической величины, либо в некоторых относительных единицах, в том числе и в неименованных. В соответствии с этим принято различать абсолютные и относительные измерения.

Абсолютное измерение – измерение, основанное на прямых измере-ниях одной или нескольких основных величин и (или) использовании значений физических констант.

Понятие абсолютное измерение применяется как противоположное понятию относительное измерение и рассматривается как измерение величины в ее единицах. В таком понимании это понятие находит все большее применение.

Относительное измерение – измерение отношения величины к одноименной величине, играющей роль единицы, или измерение измене-ния величины по отношению к одноименной величине, принимаемой за исходную.

По числу повторных измерений одной и той же величины различают однократные и многократные измерения.

Однократное измерениеизмерение, выполненное один раз.

Многократное измерение – измерение физической величины одного и того же размера, результат которого получен из нескольких следующих друг за другом измерений, т. е. состоящее из ряда однократных измерений.

Многократные измерения проводят или для страховки от грубых погрешностей или для последующей математической обработки результатов (расчет средних значений, статистическая оценка отклонений и др.). Многократные измерения называют также «измерения с многократными наблюдениями». В зависимости от поставленной цели число повторных измерений может колебаться в широких пределах (от двух измерений до нескольких десятков и даже сотен).

Статическое измерение – измерение физической величины, принимаемой в соответствии с конкретной измерительной задачей за неизменную на протяжении времени измерения

Динамическое измерение – измерение изменяющейся по размеру физической величины.

Статические и динамические измерения наиболее логично рассматривать в зависимости от режима получения средством измерения входного сигнала измерительной информации. При измерении в статическом режиме (или квазистатическом) скорость изменения входно-го сигнала несоизмеримо ниже скорости его преобразования в измери-тельной цепи и результаты фиксируются без динамических искажений.

При измерении в динамическом режиме появляются дополнитель-ные динамические погрешности, связанные со слишком быстрым измене-нием либо самой измеряемой физической величины, либо входного сигнала измерительной информации, поступающего от постоянной измеряемой величины. Например, измерение диаметров тел качения (постоянных физических величин) в подшипниковой промышленности осуществляется с использованием контрольно-сортировочных автоматов. При этом скорость изменения измерительной информации на входе может оказаться соизмеримой со скоростью измерительных преобразований в цепи прибора. Измерение температуры с помощью ртутного термометра несоизмеримо медленнее измерений электронными термометрами, следовательно, применяемые средства измерений могут в значительной степени определить режим измерений.

Трактовка статических и динамических измерений как измерений постоянной либо переменной физических величин примитивна и в философском плане всегда неоднозначна ("все течет, все меняется"). "Неизменных" физических величин, кроме физических констант в практике измерений почти нет, все величины различаются только в соответствии со скоростью изменения.

По реализованной точности и по степени рассеяния результатов при многократном повторении измерений одной и той же величины различают равноточные и неравноточные, а также на равнорассеянные и неравно-рассеянные измерения.

Равноточные измерения – ряд измерений какой-либо величины, выполненных одинаковыми по точности средствами измерений в одних и тех же условиях с одинаковой тщательностью.

Неравноточные измерения – ряд измерений какой-либо величины, выполненных различающимися по точности средствами измерений и (или) в разных условиях.

Оценка равноточности и неравноточности, а также равнорассеянности и неравнорассеянности результатов измерений зависит от выбранных значений предельных мер расхождения точности или оценок рассеяния. Допустимые расхождения оценок устанавливают в зависимости от задачи измерения.

Равноточными называют серии измерений 1 и 2, для которых оценки погрешностей i и j можно считать практически одинаковыми

1 2,

а к неравноточным относят измерения с различающимися погрешностями

1 2.

Измерения в двух сериях считают равнорассеянными, или неравно-рассеянными в зависимости от совпадения или различия оценок случайных составляющих ПИ сравниваемых серий 1 и 2.

В зависимости от планируемой точности измерения делят на технические и метрологические.

Технические - измерения, которые выполняют с заранее установ-ленной точностью.

Иными словами, при технических измерениях погрешность измерения не должна превышать заранее заданного значения []:

  [],

где [] – допустимая погрешность измерения.

Именно такие измерения наиболее часто осуществляются в производстве, откуда и взято их наименование.

Метрологические измерения выполняют с максимально достижимой точностью, добиваясь минимальной (при имеющихся ограничениях) погрешности измерения , что можно записать как

 0.

Такие измерения имеют место при эталонировании единиц, при выполнении уникальных исследований.

В тех случаях, когда точность результата измерений не имеет принципиального значения, а цель измерений состоит в приблизительной оценке неизвестной физической величины прибегают к ориенти-ровочным измерениям, погрешность которых может колебаться в достаточно широких пределах, поскольку любая реализуемая в процессе измерений погрешность , принимается за допустимую []

[] = .

Общность метрологического подхода ко всем этим видам измерений состоит в том, что при любых измерениях определяют значения реализуемых погрешностей, без чего невозможна достоверная оценка результатов.

Методы измерений

Метод измерений – прием или совокупность приемов сравнения измеряемой физической величины с ее единицей в соответствии с реализованным принципом измерений.

Различают следующие методы измерений:

- метод непосредственной оценки;

- метод сравнения с мерой;

- нулевой метод измерений;

- дифференциальный метод измерений;

- метод измерений замещением;

- метод измерений дополнением;

- контактный метод измерений;

- бесконтактный метод измерений.

Анализ метода измерений следует начинать с выяснения основных признаков: является он методом непосредственной оценки или методом сравнения с мерой. Принципиальные различия между этими двумя методами измерений заключаются в том, что метод непосредственной оценки реализуют с помощью приборов без дополнительного применения мер, а метод сравнения с мерой предусматривает обязательное использование овеществленной меры. Меры в явном виде воспроизводят с выбранной точностью физическую величину определенного (близкого к измеряемой) размера.

Метод непосредственной оценки – метод измерений, при котором значение величины определяют непосредственно по показывающему СИ.

Метод сравнения с мерой – метод измерений, в котором измеряемую величину сравнивают с величиной, воспроизводимой мерой.

При использовании метода непосредственной оценки значение измеряемой физической величины определяют непосредственно по отсчетному устройству прибора прямого действия. Суть метода непосред-ственной оценки, как любого метода измерения состоит в сравнении измеряемой величины с мерой, принятой за единицу, но в этом случае мера "заложена" в измерительный прибор опосредовано. Прибор осуществляет преобразование входного сигнала измерительной информации, соответствующего всей измеряемой величине, после чего и происходит оценка ее значения.

Формальное выражение для описания метода непосредственной оценки может быть представлено в следующей форме:

Q = х

где Q – измеряемая величина,

х – показания средства измерения.

Метод сравнения с мерой характеризуется тем, что измеряемая величина сравнивается с известной величиной, воспроизводимой мерой.

Примерами этого метода являются измерения массы на рычажных весах с уравновешиванием гирями (мерами массы), измерения напряжения постоянного тока прибором-компенсатором путем сравнения с известной ЭДС нормального элемента.

Формально метод сравнения с мерой может быть описан следующим выражением:

Q = х + Хм,

где Q – измеряемая величина,

х – показания средства измерения.

Хм величина, воспроизводимая мерой.

Примерами используемых мер являются гири, концевые меры длины или угла, эталонные резисторы и т.д. В случае, когда используют высокоточные меры, можно уменьшить инструментальную составляющую погрешность не только за счет точности меры, но и за счет существенного (по сравнению с измерением методом непосредственной оценки) уменьшения применяемого диапазона преобразований используемого прибора, что обычно приводит к снижению значения погрешности этого прибора.

Метод сравнения с мерой реализуется в нескольких разновидностях, среди которых различают:

- дифференциальный и нулевой методы измерений,

- метод совпадений,

- метод измерений замещением и метод противопоставления,

- метод измерений дополнением.

Дифференциальный и нулевой методы отличаются друг от друга в зависимости от степени приближения размера, воспроизводимого мерой, к измеряемой величине.

Дифференциальный метод измерений – метод измерений, при котором измеряемая величина сравнивается с однородной величиной, имеющей известное значение, незначительно отличающееся от значения измеряемой величины, и при котором измеряется разность между этими двумя величинами.

Пример – измерения длины, выполняемые на станковом приборе с измерительной головкой при настройке по блоку концевых мер.

Фактически дифференциальный метод измерений – это метод сравнения с мерой, в котором на измерительный прибор воздействует разность измеряемой величины и известной величины, воспроизводимой мерой, что формально соответствует х ≠ 0 в выражении

Q = х + Хм.

Нулевой метод измерений – метод сравнения с мерой, в котором результирующий эффект воздействия измеряемой величины и меры на прибор сравнения доводят до нуля (х ≈ 0 в том же выражении Q = х + Хм из чего следует, что Q ≈ Хм ).

Пример – измерения массы взвешиванием на равноплечих рычажных весах с полным уравновешиванием чашек.

Метод совпадений – метод сравнения с мерой, в котором значение измеряемой величины оценивают, используя совпадение ее с величиной, воспроизводимой мерой (т.е. с фиксированной отметкой на шкале физической величины).

Для оценки совпадения используют прибор сравнения или органолептику, фиксируя появление определенного физического эффекта (стробоскопический эффект, совпадение резонансных частот, плавление или застывание индикаторного вещества при достижении фиксированной температуры и другие физические эффекты).

В зависимости от одновременности или неодновременности воздейст-вия на прибор сравнения измеряемой величины и величины, воспроизводи-мой мерой, различают метод измерений замещением и метод противо-поставления.

Метод замещения – метод сравнения с мерой, в котором известную величину, воспроизводимую мерой, после настройки прибора замещают измеряемой величиной, то есть эти величины воздействуют на прибор последовательно.

Метод противопоставления метод сравнения с мерой, в котором измеряемая величина и величина, воспроизводимая мерой, одновременно воздействуют на прибор сравнения, с помощью которого устанавливается соотношение между этими величинами.

Метод измерений дополнением – метод сравнения с мерой, в котором значение измеряемой величины дополняется мерой этой же величины с таким расчетом, чтобы на прибор сравнения воздействовала их сумма, равная заранее заданному значению.

Метод дополнения может быть реализован как при замещении, так и при противопоставлении измеряемой величины и меры.

Для анализа МВИ использование классификации методов измерений имеет практическое значение, поскольку они прямо связаны с поиском источников погрешностей и оценкой их характера. Так метод непосредственной оценки может характеризоваться прогрессирующей составляющей погрешности, которая увеличивается с увеличением измеряемой величины. У всех разновидностей методов сравнения с мерой обязательно присутствуют не только погрешности приборов, но и погрешности мер, причем механизмы их проявления несколько различаются в соответствии с разновидностью метода.

Деление методов измерений на контактные и бесконтактные имеет определенный смысл для анализа погрешностей, которые возникают из-за взаимодействия прибора с объектом измерений. При этом необходимо учитывать контактные взаимодействия (деформация измерительных наконечников, колебание переходных сопротивлений и др.), либо особен-ности "бесконтактного съема" измерительной информации – оптические искажения в воздухе, ослабление сигнала на расстоянии и т.д.

Контактный метод измерений – метод измерений, основанный на том, что чувствительный элемент прибора приводится в контакт с объектом измерения.

Примеры: измерение диаметра вала индикаторной скобой, измерение температуры тела термометром.

Бесконтактный метод измерений – метод измерений, основанный на том, что чувствительный элемент СИ не приводится в контакт с объектом измерения.

Примерами могут быть измерение температуры в доменной печи пирометром и измерение расстояния до объекта радиолокатором.

Для оценки метода измерений предлагается ответить на вопросы:

- применяется ли мера для воспроизведения ФВ в явном виде?

- измеряются ли значения отклонений ФВ от значения меры?

Отрицательный ответ на первый вопрос означает, что мы имеем дело с методом непосредственной оценки. Положительный ответ на этот вопрос позволяет утверждать, что применяется метод сравнения с мерой. Если при этом значение разности измеряемой величины и меры доводится до нуля, реализуется нулевой метод измерений (иногда называемый методом полного уравновешивания), а если разность этих значений алгебраически суммируется со значением меры – дифференциальный метод.

Если в ходе измерения мера и измеряемый объект последовательно воздействуют на вход средства измерений (СИ), "замещая" друг друга, реализуется метод замещения. Например, измерительная головка на стойке настраивается по плоскопараллельной концевой мере длины, после чего мера убирается и замещается контролируемой деталью.

Некоторые приборы обеспечивают возможность одновременного воздействия на них меры и измеряемой физической величины. С помощью таких приборов реализуется метод противопоставления.

Примеры характеристик методик выполнения измерений:

- измерение диаметра цилиндрической поверхности детали штангенциркулем в одном сечении – прямое абсолютное однократное (при повторении многократное) статическое измерение, выполняемое методом непосредственной оценки;

- нахождение значения угла прямоугольного треугольника по результатам измерений его сторон – косвенное измерение плоского угла, при котором осуществляются прямые измерения длин. Методы прямых измерений зависят от конкретной выбранной реализации;

- определение плотности материала по результатам измерений размеров (длин) образца и его массы – косвенное измерение искомой величины, требующее совместных измерений разноименных величин (длины и массы) и совокупных измерений нескольких одноименных физических величин (длин). Вычисляемый объем в этом случае также можно рассматривать как результат косвенного измерения.

Представление о качестве измерений

Измерения можно и нужно оценивать на качественном уровне. Принципиальная особенность измерений как объекта оценки качества заключается в том, что мы имеем дело с технологическим процессом получения результата информационного характера. (К подобным процессам можно отнести книгопечатание, фотографическую и видеосъемку, театральные и другие представления). Поэтому в оценивании качества технических процессов, направленных на выдачу информационных результатов наблюдается некоторый дуализм. Дополнительной особенностью измерений является различие масштабов их рассмотрения: можно оценивать организацию и проведение измерений в рамках международных, отдельной страны, субъекта хозяйствования и конкретного оператора. Реализация измерений некоторой физической величины может различаться применяемыми средствами, условиями, операторами, числом наблюдений и методиками их обработки. Сложность объекта не избавляет от необходимости оценивать уровень его качества, хотя может привести к появлению ряда более узких задач. В частности, поскольку комплексная оценка качества измерений представляется весьма сложной, можно применять дифференциальные методы оценки с привлечением значительного количества показателей.

Под качеством измерения подразумевается наиболее общее его свойство, которое обеспечивает требования исполнителя и потребителя к результату и процессу его получения. Свойства, из которых складывается качество измерений, можно представить как точность и достоверность результата, а также экономичность и безопасность его получения.

Очевидно, что точность результатов измерений является необходимым условием их использования. Обеспечение точности измерений заключается в установлении требуемого соотношения допустимой погрешности измерений [Δ] и предельного значения реализу-емой в ходе измерений погрешности Δ

Δ ≤ [Δ].

Достоверность результата измерений, которая определяет уровень доверия к нему, имеет множество аспектов, в том числе связанных с вероятностным характером измерительной информации, со степенью адек-ватности отражения результатом исследуемой физической величины и др.

Экономичность измерений – многоаспектное свойство, которое учитывает производительность и себестоимость измерений, оплату оператора, средств измерений, их эксплуатации, включая организацию и поддержание условий в зоне измерения и др.

Опасности процесса измерений могут быть связаны с измеряемым объектом, а также с применяемыми средствами измерений. Опасными объектом являются те, которые характеризуются высокими давлениями, механическими и электрическими напряжениями, силой тока, радиоактивностью и другими энергонасыщенными свойствами, вне зависимости от того, являются ли они измеряемыми величинами. Источниками опасности в применяемых средствах измерений могут быть энергетически насыщенные явления используемые для измерительных преобразований (например, высокие напряжения электронных мониторов, рентгеновское излучение, когерентные пучки оптических частот и другие).

В литературе широко употребляют такие свойства измерений, как точность, правильность, неопределенность, сходимость и воспроиз-водимость измерений. Кроме того, при рассмотрении измерений в рамках международных или страны (отрасли, концерна…) достаточно внимания уделяют таким свойствам, как единство измерений и единообразие СИ.

Точность результата измерений – одна из характеристик качества измерения, отражающая близость к нулю погрешности его результата.

Сходимость результатов измерений – близость друг к другу резуль-татов измерений одной и той же величины, выполненных повторно одними и теми же средствами, одним и тем же методом в одинаковых условиях и с одинаковой тщательностью.

Высокий уровень сходимости результатов в одной серии, полученной с использованием одной методики выполнения измерений, соответствует малым значениям случайных погрешностей при многократных измерениях. В качестве упрощенной оценки сходимости можно использовать размах результатов измерений в серии.

R = XmaxXmin.

Оценкой сходимости двух групп (серий) многократных измерений может быть близость размахов или погрешностей (средних квадратичес-ких, средних арифметических).

Геометрические представления о размахе R результатов измерений можно получить с использованием точечной диаграммы результатов многократных измерений одной и той же физической величины, которая строится в координатной системе "измеренные значения X – номер измерения N" в любом удобном масштабе.

Воспроизводимость результатов измерений (воспроизводимость измерений) – близость результатов измерений одной и той же величины, полученных в разных местах, разными методами, разными средствами, разными операторами, в разное время, но приведенных к одним и тем же условиям измерений (температуре, давлению, влажности и др.). Воспроизводимость можно оценить, после выполнения нескольких серий многократных измерений одной и той же физической величины с использованием разных методик выполнения измерений. В качестве оценок воспроизводимости могут служить разности средних значений в сериях, средних квадратических погрешностей серий, разности экстре-мальных результатов разных серий и другие оценки.

Единство измерений – состояние измерений, характеризующееся тем, что их результаты выражаются в узаконенных единицах, размеры которых в установленных пределах равны размерам единиц, воспроизводимых первичными эталонами, а погрешности результатов измерений известны и с заданной вероятностью не выходят за установленные пределы.

Предложенное разделение свойств объектов основано на том, что проектирование любого процесса направлено на достижение определенной технической цели и только после получения положительного результата ставятся вопросы о снижении затрат и повышении безопасности. Кроме того, экономические расчеты всегда отделяли от "технических", а что касается безопасности, она давно выделилась в некую особую сферу и даже обзавелась собственной системой стандартов.

Техническая эффективность измерений может быль декомпонирована на точность и достоверность, экономичность измерений – на себестои-мость и производительность, а безопасность – на безопасность оператора и безопасность окружения. Декомпозиция может быть продолжена на более простые свойства с конкретными наименованиями, входящие в вышестоя-щие группы свойств.

При анализе экономичности следует рассматривать проектирование МВИ, подготовку и проведение измерений, включая обработку результатов. При анализе безопасности обращают внимание на безопасность оператора, ближайшего и дальнего окружения (включая экологическую безопасность), причем необходимо учитывать как непосредственные опасные воздействия, так и отдаленные последствия в виде слабых, накапливающихся и/или отложенных неблагоприятных результатов.

ТЕСТ РУБЕЖНОГО КОНТРОЛЯ №2

Тест содержит 5 заданий, на выполнение которых отводится 5 минут. Выберите наиболее правильный, по Вашему мнению, вариант ответа и отметьте его любым значком в бланке ответов.

1. Дифференциальным называется…

1)

Вид измерения

2)

Область измерения

3)

Метод измерения

4)

Принцип измерения

2. Косвенным называется…

1)

Область измерения

2)

Метод измерения

3)

Принцип измерения

4)

Вид измерения

3. Прямым называется…

1)

Принцип измерения

2)

Область измерения

3)

Вид измерения

4)

Метод измерения

4. Совместным называется…

1)

Область измерения

2)

Принцип измерения

3)

Вид измерения

4)

Метод измерения

5. Совокупным называется…

1)

Принцип измерения

2)

Область измерения

3)

Метод измерения

4)

Вид измерения

Бланк ответов

1

2

3

4

5

1

2

3

4

Критерии оценки

Каждый правильный ответ оценивается 10 баллами. Знание студента оценивается на: - «отлично», если итоговая сумма равна 60 баллам; - «хорошо», если итоговая сумма равна 40 баллов; - «удовлетворительно», если итоговая сумма равна 30 баллов, - «неудовлетворительно», если итоговая сумма равна 20 баллов.

Проектное задание

В лаборатории кафедры анализ предложенных преподавателем измерительных экспериментов на предмет определения видов и методом измерений.

Модуль №3

Классификация средств измерений

Комплексная цель:

Изучить виды средств измерений, для дальнейшего грамотного и компетентного решения задач по метрологическому обеспечению научной и технической деятельности.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]