Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
писаренко.doc
Скачиваний:
25
Добавлен:
22.09.2019
Размер:
67.58 Кб
Скачать
  1. Перспективные оптоматериалы и структуры.

Cовременная оптоэлектроника характеризуется интенсивным поиском и освоением широкого класса оптоэлектронных сред, включая монокристаллические аморфные, полимерные материалы, а также структур разнообразных типов (в том числе квантово-размерных) на их основе.

Общим для такого разнообразия оптоэлектронных сред является то, что в них существенную роль играют эффекты статистического беспорядка (композиционного, топологического, дислокационного и т. д.). Важность локального влияния флуктуации возрастает по мере перехода к квантово-размерным структурам, при этом локальные флуктуации могут существенно влиять на приборные характеристики. Наряду с этим важную роль в физике оптоэлектронных приборов играют квантово-размерные эффекты, эффекты зонной структуры, эффекты микронапряжений и т. д.

  1. Инжекционный лазер и основные законы ик-излучения.

полупроводниковый лазер, в к-ром для создания инверсии населённости используется инжекция избыточных эл-нов и дырок в прямом (пропускном) направлении через нелинейный ПП контакт, обычно через р — n-переход или гетеропереход. Важнейшей разновидностью И. л. явл. гетеролазер, включающий два гетероперехода, между к-рыми находится активный слой с более узкой запрещённой зоной, чем в прилегающих слоях. И. л. имеет в кач-ве оптич. резонатора плоскопараллельные зеркальные грани самого кристалла или выносные зеркала. Хар-ки нек-рых И. л. даны в табл. в ст.

наиб, распространённая разновидность полупроводникового лазера, отличающаяся использованием инжекции носителей заряда через нелинейный электрич. Контакт

усиление света посредством вынужденного излучения

Все лазеры состоят из трёх основных частей:

активной (рабочей) среды;

системы накачки (источник энергии);

оптического резонатора (может отсутствовать, если лазер работает в режиме усилителя).

Каждая из них обеспечивает для работы лазера выполнение своих определённых функций.

Изобретение относится к квантовой электронной технике, а именно к конструкции инжекционного полупроводникового лазера с повышенной плотностью мощности излучения. Инжекционный лазер на основе полупроводникового материала AIIIBV и его твердых растворов с интерференционным покрытием по крайней мере на одной оптической грани, состоящим из переходного слоя, эпитаксиальной пленки селенида цинка, имеет переходной слой из трех подслоев, средним из которых является монослой серы. Со стороны оптической грани к нему примыкает подслой из полупроводникового материала оптической грани, легированного серой. Со стороны пленки селенида цинка примыкает подслой переменного состава из ZnSe xS1-x, где x изменяется в диапазоне от 0,9 до менее 1,0. Технический результат - создание инжекционного лазера с повышенной лазерной стойкостью зеркал и увеличенной оптической прозрачностью приповерхностного слоя оптической грани, то есть с увеличенной выходной мощностью излучения и стабилизацией ее как для одномодового, так и для многомодового режимов работы, температурной стабилизацией, повышенными надежностью и ресурсом работы инжекционного лазера.

Инфракра́сное излуче́ние — электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны[1] λ = 0,74 мкм) и микроволновым излучением (λ ~ 1—2 мм).