Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ДУ.docx
Скачиваний:
22
Добавлен:
22.09.2019
Размер:
401.39 Кб
Скачать
  1. Уравнения в полных дифференциалах. Понятие интегрирующего множителя. Уравнения в полных дифференциалах

Если в уравнении левая часть представляет собой полный дифференциал, то есть , то такое уравнение называется уравнением в полных дифференциалах (частный случай так называемого пфаффова уравнения). Интегральные кривые такого уравнения суть линии уровней функции , т.е. определяются уравнением при всевозможных значениях произвольной постоянной .

Если в области выполнено условие , то общее решение уравнения (1) определяется из уравнения как неявная функция . Через каждую точку области проходит единственная интегральная кривая уравнения (1).

Если рассматриваемая область односвязна, а производные также непрерывны в , то для того, чтобы (1) было уравнением в полных дифференциалах, необходимо и достаточно выполнения условия

(признак уравнения в полных дифференциалах).

Интегрирующий множитель

Непрерывная функция в называется интегрирующим множителем уравнения (1), если уравнение

является уравнением в полных дифференциалах, то есть

для некоторой функции

. Число интегрирующих множителей данного уравнения бесконечно.

Функция является интегрирующим множителем уравнения (1) тогда и только тогда, когда она удовлетворяет уравнению

(область по-прежнему полагаем односвязной; уравнение (2) является следствием признака уравнения в полных дифференциалах).

Уравнение (2) в общем виде решается сложнее, чем (1), но для интегрирования (1) достаточно знать один интегрирующий множитель, то есть найти какое-либо одно решение уравнения (2). Обычно ищут решение (2) в виде или , но это не всегда возможно.

Алгоритм решения

(1)

(2)

(3)

Возьмём (3).1 и проинтегрируем по переменной t:

(*)

Подставим в (3).2:

В получившемся равенстве слагаемые, содержащие t, уничтожатся. Получим: . Проинтегрируем по x и подставим в (*).

  1. Уравнения, не разрешенные относительно производной. Уравнения, не содержащие явно одну из переменных.

Дифференциальное уравнение первого порядка, не разрешенное относительно производной, имеет вид

. (1)

При решении такого уравнения желательно разрешить его относительно , т.е. получить одно или несколько уравнений, разрешенных относительно производной:

,

каждое из которых нужно решать.

Не всегда уравнение (1) разрешается относительно и еще реже полученные после разрешения уравнение легко интегрируется. Поэтому уравнение вида (1) часто приходится решать методом введения параметра.

Пусть уравнение (1) легко разрешается относительно y или относительно x, например, его можно записать в виде . Введя параметр , получим .

Взяв полный дифференциал от правой и левой частей последнего равенства, и заменив dy через pdx, получим уравнение

,

т.е. .

Если найдено решения этого уравнения , то решения исходного уравнения запишем в параметрическом виде

.

Уравнения, не содержащие явно искомой функции и ее производных до порядка k – 1 включительно.

Это уравнения вида:

В уравнениях такого типа возможно понижение порядка на k единиц. Для этого производят замену переменной:

Тогда получаем:

Теперь допустим, что полученное дифференциальное уравнение проинтегрировано и совокупность его решений выражается соотношением:

Делая обратную подстановку, имеем:

Интегрируя полученное соотношение последовательно k раз, получаем окончательный ответ:

уравнения не содержащие явно независимой переменной

Это уравнения вида

Порядок таких уравнений может быть понижен на единицу с помощью замены переменных

и т.д.

Подставляя эти значения в исходное дифференциальное уравнение, получаем:

Если это уравнение проинтегрировать, и - совокупность его решений, то для решения данного дифференциального уравнения остается решить уравнение первого порядка:

  1. Уравнения, не разрешенные относительно производной. Общий метод введения параметров. Уравнение Лагранжа. Уравнение Клеро.

Дифференциальное уравнение первого порядка, не разрешенное относительно производной, имеет вид

. (1)

При решении такого уравнения желательно разрешить его относительно , т.е. получить одно или несколько уравнений, разрешенных относительно производной:

,

каждое из которых нужно решать.

Не всегда уравнение (1) разрешается относительно и еще реже полученные после разрешения уравнение легко интегрируется. Поэтому уравнение вида (1) часто приходится решать методом введения параметра.