
- •1.Предмет оптики и ее задачи; основные разделы оптики и их краткая характеристика.
- •2.Представления о свете на различных этапах развития оптики; электромагнитная природа света.
- •3.Характеристика оптического диапазона электромагнитных волн.
- •4.Источники и приемники оптического излучения.
- •5.Классификация электромагнитных волн; плоские и сферические электромагнитные волны и возможность их экспериментального осуществления; однородные и неоднородные волны.
- •7.Суперпозиция электромагнитных волн с одинаковыми направлениями колебаний векторов напряженности; биения; стоячие волны и их экспериментальная реализация в оптике.
- •9.Естественный и поляризованный свет; типы и формы поляризации волн.
- •10. Квазимонохроматические волны; Фурье-анализ и Фурье-синтез волновых полей; спектр импульсов излучения; соотношение между продолжительностью импульса и шириной спектра.
- •11.Система энергетических величин: энергетические характеристики излучения; размерность и единицы измерения энергетических величин.
- •12.Система световых величин; единицы измерения световых величин; переход от энергетических к световым величинам; функция видности.
- •13. Интерференция волн и условия её наблюдения; понятие о когерентности; видимость интерференционной картины.
- •14.Общая интерференционная схема; расчет интерференционной картины на основе схемы Юнга.
- •15.Осуществление когерентных волн в оптике: интерференционные схемы с делением волнового фронта – билинза Бийе, бипризма Френеля, зеркало Ллойда, бизеркало Френеля.
- •16.Осуществление когерентных волн в оптике: интерференционные схемы с делением амплитуды волн – интерференция в тонких пластинках; интерференция в клине; кольца Ньютона.
- •17.Линии равного наклона и равной толщины; способы их получения.
- •18.Интерференция немонохроматических световых пучков: временная когерентность; значение размеров источника; пространственная когерентность.
- •19.Многолучевая интерференция; формулы Эйри; интерферометр Фабри – Перо; пластинка Люммера – Герке.
- •20.Интерферометры и интерферометрия: интерферометры Майкельсона, Маха – Цендера, Тваймана - Грина; звездный интерферометр; интерферометр Рождественского.
- •4 2. Экспериментальные явления, сопровождающие распространение света в оптически анизотропной среде; двойное лучепреломление; обыкновенная и необыкновенная волна; поляризационные призмы
- •43.Элементы теории распространения света в анизотропной среде; уравнение волновых нормалей; фазовая и лучевая скорости волн; одноосные и двухосные кристаллы
- •45.Понятие о гиротропии и гиротропных средах; естественная оптическая активность и ее применение в сахариметрии; объяснение естественной оптической активности
- •44.Качественный анализ распространения света в кристаллах с применением построения Гюйгенса; построение Гюйгенса для одноосных кристаллов
- •46.Анизотропия, индуцированная внешним механическим воздействием, и её практическое значение
- •47.Анизотропия, обусловленная действием внешнего электрического поля; эффект Поккельса; эффект Керра; практическое применение электрооптических эффектов
- •48.Анизотропия, обусловленная действием внешнего магнитного поля; эффект Коттона – Мутона, эффект Фарадея и их практическое применение
- •49.Интерференция поляризованного света: условия интерференции поляризованного света; законы Френеля; коноскопические фигуры для одноосных и двуосных кристаллов; изогиры и изохроматы
- •53.Уравнение эйконала и объяснение искривления луча в оптически неоднородных средах
- •50.Поляризационные приборы; четвертьволновые и полуволновые фазовые пластинки; компенсаторы разности фаз
- •51.Получение и анализ поляризованного света; методика проведения качественного анализа состояния поляризации
- •69.Фотоэлектрические приемники с внутренним фотоэффектом: фоторезисторы, фотогальванические элементы и др.
- •52.Основные явления геометрической оптики; основные законы геометрической оптики и границы их применимости; принцип Ферма и его практическое применение
- •54.Центрированная оптическая система; кардинальные элементы центрированной оптической системы; правила знаков
- •55.Простейшие оптические приборы: микроскоп, телескоп, проекционный аппарат; построение изображений этими приборами; разрешающая способность микроскопа и телескопа
- •56.Аберрации оптических систем: астигматизм, сферическая и хроматическая аберрации; влияние аберраций на качество изображения
- •57.Тепловое излучение тел: механизм явления; излучательная и поглощательная способность тела, соотношение между ними; модель абсолютно черного тела
- •58.Основные законы теплового излучения тел: закон Стефана – Больцмана; формула смещения Вина; формула Рэлея Джинса; формула Планка
- •60.Лазер как источник оптического излучения; принцип работы лазера; условие стационарной генерации (баланс фаз и баланс амплитуд).
- •63.Нелинейная поляризация среды в поле интенсивного лазерного излучения; оптическое детектирование и генерация гармоник
- •65.Нелинейно-оптические явления и условия их реализации: вынужденное комбинационное рассеяние света; параметрические эффекты; сложение и вычитание частот
- •64.Самовоздействие света в нелинейной оптической среде; самофокусировка и дефокусировка пучка
- •66.Фотоэффект и его законы: опыты Герца; опыты Столетова
- •67.Невозможность объяснения фотоэффекта на основе классической теории излучения; гипотеза Планка; уравнение Эйнштейна, объяснение законов фотоэффекта на его основе; многофотонный фотоэффект
- •68.Фотоэлектрические приемники оптического излучения с внешним фотоэффектом: вакуумные, газонаполненные фотоэлементы, фотоэлектронные умножители
- •70.Основные характеристики фотоэлектрических приемников излучения; шумы фотоэлектрических приемников и их влияние на характеристики приёмников
- •21.Диэлектрические зеркала и просветление оптики: принцип действия; практическое применение.
- •22. Применение интерференции в рефрактометрии, спектроскопии, метрологии; другие применения интерференции.
- •23. Суть явления дифракции; условия его наблюдения; виды дифракции; условия их реализации; принцип Гюйгенса – Френеля.
- •24.Дифракция Френеля; метод зон Френеля; дифракция на круглом отверстии; зонная пластинка; принцип Бабине; геометрическая оптика как предельный случай волновой оптики.
- •25. Применение векторных диаграмм для анализа дифракционных картин: суть метода векторных диаграмм; дифракция на экране и на краю полубесконечного экрана; спираль Корню.
- •26. Дифракция Фраунгофера на щели, на прямоугольном и круглом отверстиях.
- •27. Дифракция Фраунгофера на регулярных структурах: на одномерной дифракционной решетке; на двумерной дифракционной решетке; на трехмерной дифракционной решетке.
- •28. Спектральный анализ в оптике; призменные спектральные приборы и их основные характеристики.
- •29. Спектральный анализ в оптике; интерференционные и дифракционные спектральные приборы и их основные характеристики.
- •30. Разрешающая способность оптических приборов; предел разрешающей способности (на основе критерия Рэлея).
- •31. Физические основы голографической записи изображений; особенности голограмм как носителей информации.
- •32. Схемы записи и восстановления тонкослойных и толстослойных голограмм; применение голографии.
- •35. Распространение света в проводящих средах; глубина проникновения.
- •36. Дисперсия света в веществе: суть явления дисперсии; классическая электронная теория дисперсии; нормальная и аномальная дисперсия.
- •37. Дисперсия света и дисперсия вещества; экспериментальное изучение дисперсии: метод скрещенных призм; метод Рождественского.
- •38.Поглощение света; закон Бугера – Ламберта – Бера, границы его применимости.
23. Суть явления дифракции; условия его наблюдения; виды дифракции; условия их реализации; принцип Гюйгенса – Френеля.
Дифракцией называется огибание волнами препятствий, встречающихся на их пути, или в более широком смысле - любое отклонение распространения волн вблизи препятствий от законов геометрической оптики. Благодаря дифракции волны могут попадать в область геометрической тени, огибать препятствия, проникать через небольшие отверстия в экранах и т. д. Например, звук хорошо слышен за углом дома, т. е. звуковая волна его огибает.
Явление дифракции объясняется с помощью принципа Гюйгенса (см. § 170), согласно которому каждая точка, до которой доходит волна, служит центром вторичных волн, а огибающая этих волн задает положение волнового фронта в следующий момент времени.
Пусть
плоская волна нормально падает на
отверстие в непрозрачном экране .
Согласно Гюйгенсу, каждая точка
выделяемого отверстием участка волнового
фронта служит источником вторичных
волн (в однородной изотропной среде они
сферические). Построив огибающую
вторичных волн для некоторого момента
времени, видим, что фронт волны заходит
в область геометрической тени, т. е.
волна огибает края отверстия.
24.Дифракция Френеля; метод зон Френеля; дифракция на круглом отверстии; зонная пластинка; принцип Бабине; геометрическая оптика как предельный случай волновой оптики.
Зоны Френеля
Определить понятие зоны Френеля можно для дифракции на отверстии любой формы и даже вообще без отверстия, но практически полезно рассмотрение зон Френеля только при дифракции на круглом отверстии, причем в случае, когда источник света и точка наблюдения находятся на прямой, перпендикулярной к плоскости экрана с отверстием и проходящей через центр отверстия.
Именно
такой случай изображен на рис. 36. Здесь
- точечный источник света,
- точка наблюдения. На зоны Френеля можно
мысленно разбить любую поверхность,
через которую проходит свет, например,
поверхность равной фазы. Но в нашем
случае удобнее разбить на зоны Френеля
плоскую поверхность отверстия.
Задача
имеет ось симметрии, поэтому зоны Френеля
имеют вид колец. Задача сводится к
определению радиуса зоны Френеля с
произвольным номером
.
Под радиусом зоны Френеля подразумевают
больший радиус кольца.
Сделаем
дополнительное построение .Соединим
произвольную точку
в плоскости отверстия отрезками прямых
линий с источником света
и с точкой наблюдения
.
Световая волна, которая приходит в точку
наблюдения по пути
, проходит больший путь, чем волна,
прошедшая по пути
. Разность хода
определяет разность фаз волн, пришедших
от вторичных источников
и
в точку наблюдения
.
От разности фаз зависит результат
интерференции волн в точке
и, следовательно, интенсивность света
в этой точке.
25. Применение векторных диаграмм для анализа дифракционных картин: суть метода векторных диаграмм; дифракция на экране и на краю полубесконечного экрана; спираль Корню.
Векторная диаграмма — графическое изображение меняющихся по закону синуса (косинуса) величин и соотношений между ними при помощи направленных отрезков — векторов. Векторные диаграммы широко применяются в электротехнике, акустике, оптике, теории колебаний итд.
Гармоническое (то есть синусоидальное) колебание может быть представлено графически в виде проекции на некоторую ось (обычно берут ось координат Оx) вектора, вращающегося с постоянной угловой скоростью ω. Длина вектора соответствует амплитуде, угол поворота относительно оси (Ox) - фазе.