
- •1.Предмет оптики и ее задачи; основные разделы оптики и их краткая характеристика.
- •2.Представления о свете на различных этапах развития оптики; электромагнитная природа света.
- •3.Характеристика оптического диапазона электромагнитных волн.
- •4.Источники и приемники оптического излучения.
- •5.Классификация электромагнитных волн; плоские и сферические электромагнитные волны и возможность их экспериментального осуществления; однородные и неоднородные волны.
- •7.Суперпозиция электромагнитных волн с одинаковыми направлениями колебаний векторов напряженности; биения; стоячие волны и их экспериментальная реализация в оптике.
- •9.Естественный и поляризованный свет; типы и формы поляризации волн.
- •10. Квазимонохроматические волны; Фурье-анализ и Фурье-синтез волновых полей; спектр импульсов излучения; соотношение между продолжительностью импульса и шириной спектра.
- •11.Система энергетических величин: энергетические характеристики излучения; размерность и единицы измерения энергетических величин.
- •12.Система световых величин; единицы измерения световых величин; переход от энергетических к световым величинам; функция видности.
- •13. Интерференция волн и условия её наблюдения; понятие о когерентности; видимость интерференционной картины.
- •14.Общая интерференционная схема; расчет интерференционной картины на основе схемы Юнга.
- •15.Осуществление когерентных волн в оптике: интерференционные схемы с делением волнового фронта – билинза Бийе, бипризма Френеля, зеркало Ллойда, бизеркало Френеля.
- •16.Осуществление когерентных волн в оптике: интерференционные схемы с делением амплитуды волн – интерференция в тонких пластинках; интерференция в клине; кольца Ньютона.
- •17.Линии равного наклона и равной толщины; способы их получения.
- •18.Интерференция немонохроматических световых пучков: временная когерентность; значение размеров источника; пространственная когерентность.
- •19.Многолучевая интерференция; формулы Эйри; интерферометр Фабри – Перо; пластинка Люммера – Герке.
- •20.Интерферометры и интерферометрия: интерферометры Майкельсона, Маха – Цендера, Тваймана - Грина; звездный интерферометр; интерферометр Рождественского.
- •4 2. Экспериментальные явления, сопровождающие распространение света в оптически анизотропной среде; двойное лучепреломление; обыкновенная и необыкновенная волна; поляризационные призмы
- •43.Элементы теории распространения света в анизотропной среде; уравнение волновых нормалей; фазовая и лучевая скорости волн; одноосные и двухосные кристаллы
- •45.Понятие о гиротропии и гиротропных средах; естественная оптическая активность и ее применение в сахариметрии; объяснение естественной оптической активности
- •44.Качественный анализ распространения света в кристаллах с применением построения Гюйгенса; построение Гюйгенса для одноосных кристаллов
- •46.Анизотропия, индуцированная внешним механическим воздействием, и её практическое значение
- •47.Анизотропия, обусловленная действием внешнего электрического поля; эффект Поккельса; эффект Керра; практическое применение электрооптических эффектов
- •48.Анизотропия, обусловленная действием внешнего магнитного поля; эффект Коттона – Мутона, эффект Фарадея и их практическое применение
- •49.Интерференция поляризованного света: условия интерференции поляризованного света; законы Френеля; коноскопические фигуры для одноосных и двуосных кристаллов; изогиры и изохроматы
- •53.Уравнение эйконала и объяснение искривления луча в оптически неоднородных средах
- •50.Поляризационные приборы; четвертьволновые и полуволновые фазовые пластинки; компенсаторы разности фаз
- •51.Получение и анализ поляризованного света; методика проведения качественного анализа состояния поляризации
- •69.Фотоэлектрические приемники с внутренним фотоэффектом: фоторезисторы, фотогальванические элементы и др.
- •52.Основные явления геометрической оптики; основные законы геометрической оптики и границы их применимости; принцип Ферма и его практическое применение
- •54.Центрированная оптическая система; кардинальные элементы центрированной оптической системы; правила знаков
- •55.Простейшие оптические приборы: микроскоп, телескоп, проекционный аппарат; построение изображений этими приборами; разрешающая способность микроскопа и телескопа
- •56.Аберрации оптических систем: астигматизм, сферическая и хроматическая аберрации; влияние аберраций на качество изображения
- •57.Тепловое излучение тел: механизм явления; излучательная и поглощательная способность тела, соотношение между ними; модель абсолютно черного тела
- •58.Основные законы теплового излучения тел: закон Стефана – Больцмана; формула смещения Вина; формула Рэлея Джинса; формула Планка
- •60.Лазер как источник оптического излучения; принцип работы лазера; условие стационарной генерации (баланс фаз и баланс амплитуд).
- •63.Нелинейная поляризация среды в поле интенсивного лазерного излучения; оптическое детектирование и генерация гармоник
- •65.Нелинейно-оптические явления и условия их реализации: вынужденное комбинационное рассеяние света; параметрические эффекты; сложение и вычитание частот
- •64.Самовоздействие света в нелинейной оптической среде; самофокусировка и дефокусировка пучка
- •66.Фотоэффект и его законы: опыты Герца; опыты Столетова
- •67.Невозможность объяснения фотоэффекта на основе классической теории излучения; гипотеза Планка; уравнение Эйнштейна, объяснение законов фотоэффекта на его основе; многофотонный фотоэффект
- •68.Фотоэлектрические приемники оптического излучения с внешним фотоэффектом: вакуумные, газонаполненные фотоэлементы, фотоэлектронные умножители
- •70.Основные характеристики фотоэлектрических приемников излучения; шумы фотоэлектрических приемников и их влияние на характеристики приёмников
- •21.Диэлектрические зеркала и просветление оптики: принцип действия; практическое применение.
- •22. Применение интерференции в рефрактометрии, спектроскопии, метрологии; другие применения интерференции.
- •23. Суть явления дифракции; условия его наблюдения; виды дифракции; условия их реализации; принцип Гюйгенса – Френеля.
- •24.Дифракция Френеля; метод зон Френеля; дифракция на круглом отверстии; зонная пластинка; принцип Бабине; геометрическая оптика как предельный случай волновой оптики.
- •25. Применение векторных диаграмм для анализа дифракционных картин: суть метода векторных диаграмм; дифракция на экране и на краю полубесконечного экрана; спираль Корню.
- •26. Дифракция Фраунгофера на щели, на прямоугольном и круглом отверстиях.
- •27. Дифракция Фраунгофера на регулярных структурах: на одномерной дифракционной решетке; на двумерной дифракционной решетке; на трехмерной дифракционной решетке.
- •28. Спектральный анализ в оптике; призменные спектральные приборы и их основные характеристики.
- •29. Спектральный анализ в оптике; интерференционные и дифракционные спектральные приборы и их основные характеристики.
- •30. Разрешающая способность оптических приборов; предел разрешающей способности (на основе критерия Рэлея).
- •31. Физические основы голографической записи изображений; особенности голограмм как носителей информации.
- •32. Схемы записи и восстановления тонкослойных и толстослойных голограмм; применение голографии.
- •35. Распространение света в проводящих средах; глубина проникновения.
- •36. Дисперсия света в веществе: суть явления дисперсии; классическая электронная теория дисперсии; нормальная и аномальная дисперсия.
- •37. Дисперсия света и дисперсия вещества; экспериментальное изучение дисперсии: метод скрещенных призм; метод Рождественского.
- •38.Поглощение света; закон Бугера – Ламберта – Бера, границы его применимости.
57.Тепловое излучение тел: механизм явления; излучательная и поглощательная способность тела, соотношение между ними; модель абсолютно черного тела
Теплово́е излуче́ние — электромагнитное излучение с непрерывным спектром, испускаемое нагретыми телами за счёт их тепловой энергии.
Примером теплового излучения является свет от лампы накаливания.
Мощность теплового излучения объекта, удовлетворяющего критериям абсолютно чёрного тела, описывается законом Стефана — Больцмана.
Отношение излучательной и поглощательной способностей тел описывается законом излучения Кирхгофа.
Тепловое излучение является одним из трёх элементарных видов переноса тепловой энергии (помимо теплопроводности и конвекции).
Равновесное излучение — тепловое излучение, находящееся в термодинамическом равновесии с веществом.
Абсолютно черное тело
Абсолютно черное тело — это физическая абстракция (модель), под которой понимают тело, полностью поглощающее всё падающее на него электромагнитное излучение
— для абсолютно черного тела
Поглощающая способность тела
Поглощающая способность тела — — функция частоты и температуры, показывающая, какая часть энергии электромагнитного излучения, падающего на тело, поглощается телом в области частот вблизи
где
— поток энергии, поглощающейся телом.
— поток
энергии, падающий на тело в области
вблизи
Энергетическая светимость тела
Энергетическая
светимость тела -- физическая величина,
являющаяся функцией температуры и
численно равная энергии, испускаемой
телом в единицу времени с единицы площади
поверхности по всем направлениям и по
всему спектру частот.
Дж/с·м²=Вт/м²
58.Основные законы теплового излучения тел: закон Стефана – Больцмана; формула смещения Вина; формула Рэлея Джинса; формула Планка
Излучение,
причиной которого является возбуждение
атомов и молекул вещества вследствие
его теплового движения, называется
тепловым, или температурным излучением.
Отличительной чертой теплового излучения
является то, что оно возникает за счет
внутренней энергии тела. Тепловое
излучение возникает в условиях детального
равновесия в веществе для всех
безызлучательных процессов, то есть
различных типов столкновений частиц в
газах и плазме, для обмена энергиями
электронного и колебательного движений
в твердых телах и т.д. Равновесное
состояние вещества в каждой точке
пространства
– состояние локального термодинамического
равновесия – характеризуется при этом
значением температуры, от которого
зависит тепловое излучение в данной
точке.При полном термодинамическом
равновесии все части системы имеют одну
температуру, и энергия теплового
излучения, испускаемого каждым телом,
компенсируется энергией поглощаемого
этим телом теплового излучения других
тел. Когда тепловое излучение находится
в равновесии с веществом, оно наз.
равновесным
излучением.
Равновесным является тепловое излучение
абсолютно черного тела. Абсолютно
черное тело
– тело, полностью поглощающее весь
падающий на него поток излучения.
Коэффициент поглощения абсолютно
черного тела равен единице и не зависит
от длины волны излучения.Для нечерных
тел справедлив закон
Кирхгофа:
отношение спектральной плотности
энергетической светимости любого тела
к его спектральному коэффициенту
поглощения
при
той же длине волны и температуре одинаково
для всех тел.Так как для а.ч.т.
= 1, то из закона Кирхгофа следует, что
отношение
/
для всех тел равно спектральной плотности
энергетической светимости а.ч.т.
при той же температуре и длине волны:
Функции
Планка изображаются кривыми, имеющими
максимум при некоторой частоте (длины
волны) и асимптотически стремящимися
к нулю при
и при
.
Дифференцируя функцию Планка по частоте
(длины волны) и приравнивая производную
нулю, можно определить положение
максимума. Оно определяется законом
смещения Вина:
,
где b = 2,896.10-3 м.К.
Энергию
можно определить, интегрируя формулу
Планка по длине волны (частоте). В
результате интегрирования от 0 до
получается полная объемная плотность
энергии – закон
Стефана-Больцмана:
,
где
,
и полная излучательная способность а.ч.т.:
,
где
Вт/(м2.К4)
постоянная Стефана-Больцмана.
59 Спонтанное и вынужденное излучение; вероятности спонтанных и вынужденных переходов; коэффициенты Эйнштейна; резонансное усиление света при инверсной заселенности энергетических уровней; методы создания инверсной заселенности в различных средах
Излучение, испускаемое при самопроизвольном переходе атома из одного состояния в другое, называется спонтанным. Спонтанное излучение различных атомов происходит некогерентно, так как каждый атом начинает и заканчивает излучение независимо от других. В 1916 Эйнштейн предсказал, что переходы электрона в атоме с верхнего энергетического уровня на нижний с испусканием излучения могут происходить под влиянием внешнего электромагнитного поля. Такое излучение называют вынужденным или индуцированным.