
- •1.Предмет оптики и ее задачи; основные разделы оптики и их краткая характеристика.
- •2.Представления о свете на различных этапах развития оптики; электромагнитная природа света.
- •3.Характеристика оптического диапазона электромагнитных волн.
- •4.Источники и приемники оптического излучения.
- •5.Классификация электромагнитных волн; плоские и сферические электромагнитные волны и возможность их экспериментального осуществления; однородные и неоднородные волны.
- •7.Суперпозиция электромагнитных волн с одинаковыми направлениями колебаний векторов напряженности; биения; стоячие волны и их экспериментальная реализация в оптике.
- •9.Естественный и поляризованный свет; типы и формы поляризации волн.
- •10. Квазимонохроматические волны; Фурье-анализ и Фурье-синтез волновых полей; спектр импульсов излучения; соотношение между продолжительностью импульса и шириной спектра.
- •11.Система энергетических величин: энергетические характеристики излучения; размерность и единицы измерения энергетических величин.
- •12.Система световых величин; единицы измерения световых величин; переход от энергетических к световым величинам; функция видности.
- •13. Интерференция волн и условия её наблюдения; понятие о когерентности; видимость интерференционной картины.
- •14.Общая интерференционная схема; расчет интерференционной картины на основе схемы Юнга.
- •15.Осуществление когерентных волн в оптике: интерференционные схемы с делением волнового фронта – билинза Бийе, бипризма Френеля, зеркало Ллойда, бизеркало Френеля.
- •16.Осуществление когерентных волн в оптике: интерференционные схемы с делением амплитуды волн – интерференция в тонких пластинках; интерференция в клине; кольца Ньютона.
- •17.Линии равного наклона и равной толщины; способы их получения.
- •18.Интерференция немонохроматических световых пучков: временная когерентность; значение размеров источника; пространственная когерентность.
- •19.Многолучевая интерференция; формулы Эйри; интерферометр Фабри – Перо; пластинка Люммера – Герке.
- •20.Интерферометры и интерферометрия: интерферометры Майкельсона, Маха – Цендера, Тваймана - Грина; звездный интерферометр; интерферометр Рождественского.
- •4 2. Экспериментальные явления, сопровождающие распространение света в оптически анизотропной среде; двойное лучепреломление; обыкновенная и необыкновенная волна; поляризационные призмы
- •43.Элементы теории распространения света в анизотропной среде; уравнение волновых нормалей; фазовая и лучевая скорости волн; одноосные и двухосные кристаллы
- •45.Понятие о гиротропии и гиротропных средах; естественная оптическая активность и ее применение в сахариметрии; объяснение естественной оптической активности
- •44.Качественный анализ распространения света в кристаллах с применением построения Гюйгенса; построение Гюйгенса для одноосных кристаллов
- •46.Анизотропия, индуцированная внешним механическим воздействием, и её практическое значение
- •47.Анизотропия, обусловленная действием внешнего электрического поля; эффект Поккельса; эффект Керра; практическое применение электрооптических эффектов
- •48.Анизотропия, обусловленная действием внешнего магнитного поля; эффект Коттона – Мутона, эффект Фарадея и их практическое применение
- •49.Интерференция поляризованного света: условия интерференции поляризованного света; законы Френеля; коноскопические фигуры для одноосных и двуосных кристаллов; изогиры и изохроматы
- •53.Уравнение эйконала и объяснение искривления луча в оптически неоднородных средах
- •50.Поляризационные приборы; четвертьволновые и полуволновые фазовые пластинки; компенсаторы разности фаз
- •51.Получение и анализ поляризованного света; методика проведения качественного анализа состояния поляризации
- •69.Фотоэлектрические приемники с внутренним фотоэффектом: фоторезисторы, фотогальванические элементы и др.
- •52.Основные явления геометрической оптики; основные законы геометрической оптики и границы их применимости; принцип Ферма и его практическое применение
- •54.Центрированная оптическая система; кардинальные элементы центрированной оптической системы; правила знаков
- •55.Простейшие оптические приборы: микроскоп, телескоп, проекционный аппарат; построение изображений этими приборами; разрешающая способность микроскопа и телескопа
- •56.Аберрации оптических систем: астигматизм, сферическая и хроматическая аберрации; влияние аберраций на качество изображения
- •57.Тепловое излучение тел: механизм явления; излучательная и поглощательная способность тела, соотношение между ними; модель абсолютно черного тела
- •58.Основные законы теплового излучения тел: закон Стефана – Больцмана; формула смещения Вина; формула Рэлея Джинса; формула Планка
- •60.Лазер как источник оптического излучения; принцип работы лазера; условие стационарной генерации (баланс фаз и баланс амплитуд).
- •63.Нелинейная поляризация среды в поле интенсивного лазерного излучения; оптическое детектирование и генерация гармоник
- •65.Нелинейно-оптические явления и условия их реализации: вынужденное комбинационное рассеяние света; параметрические эффекты; сложение и вычитание частот
- •64.Самовоздействие света в нелинейной оптической среде; самофокусировка и дефокусировка пучка
- •66.Фотоэффект и его законы: опыты Герца; опыты Столетова
- •67.Невозможность объяснения фотоэффекта на основе классической теории излучения; гипотеза Планка; уравнение Эйнштейна, объяснение законов фотоэффекта на его основе; многофотонный фотоэффект
- •68.Фотоэлектрические приемники оптического излучения с внешним фотоэффектом: вакуумные, газонаполненные фотоэлементы, фотоэлектронные умножители
- •70.Основные характеристики фотоэлектрических приемников излучения; шумы фотоэлектрических приемников и их влияние на характеристики приёмников
- •21.Диэлектрические зеркала и просветление оптики: принцип действия; практическое применение.
- •22. Применение интерференции в рефрактометрии, спектроскопии, метрологии; другие применения интерференции.
- •23. Суть явления дифракции; условия его наблюдения; виды дифракции; условия их реализации; принцип Гюйгенса – Френеля.
- •24.Дифракция Френеля; метод зон Френеля; дифракция на круглом отверстии; зонная пластинка; принцип Бабине; геометрическая оптика как предельный случай волновой оптики.
- •25. Применение векторных диаграмм для анализа дифракционных картин: суть метода векторных диаграмм; дифракция на экране и на краю полубесконечного экрана; спираль Корню.
- •26. Дифракция Фраунгофера на щели, на прямоугольном и круглом отверстиях.
- •27. Дифракция Фраунгофера на регулярных структурах: на одномерной дифракционной решетке; на двумерной дифракционной решетке; на трехмерной дифракционной решетке.
- •28. Спектральный анализ в оптике; призменные спектральные приборы и их основные характеристики.
- •29. Спектральный анализ в оптике; интерференционные и дифракционные спектральные приборы и их основные характеристики.
- •30. Разрешающая способность оптических приборов; предел разрешающей способности (на основе критерия Рэлея).
- •31. Физические основы голографической записи изображений; особенности голограмм как носителей информации.
- •32. Схемы записи и восстановления тонкослойных и толстослойных голограмм; применение голографии.
- •35. Распространение света в проводящих средах; глубина проникновения.
- •36. Дисперсия света в веществе: суть явления дисперсии; классическая электронная теория дисперсии; нормальная и аномальная дисперсия.
- •37. Дисперсия света и дисперсия вещества; экспериментальное изучение дисперсии: метод скрещенных призм; метод Рождественского.
- •38.Поглощение света; закон Бугера – Ламберта – Бера, границы его применимости.
66.Фотоэффект и его законы: опыты Герца; опыты Столетова
Фотоэффе́кт — это испускание электронов веществом под действием света (. В конденсированных веществах (твёрдых и жидких) выделяют внешний и внутренний фотоэффект.
1-го закона фотоэффекта: количество электронов, вырываемых светом с поверхности металла за единицу времени на данной частоте, прямо пропорционально световому потоку, освещающему металл.
2-му закону фотоэффекта, максимальная кинетическая энергия вырываемых светом электронов линейно возрастает с частотой света и не зависит от его интенсивности.
3-ий закон фотоэффекта: для каждого вещества существует красная граница фотоэффекта, то есть минимальная частота света (или максимальная длина волны λ0), при которой ещё возможен фотоэффект, и если , то фотоэффект уже не происходит.
электромагнитное
излучение представляет собой поток
отдельных квантов (фотонов) с энергией
hν
каждый, где h
— постоянная Планка. При фотоэффекте
часть падающего электромагнитного
излучения от поверхности металла
отражается, а часть проникает внутрь
поверхностного слоя металла и там
поглощается. Поглотив фотон, электрон
получает от него энергию и, совершая
работу выхода, покидает металл: , где —
максимальная кинетическая энергия,
которую может иметь электрон при вылете
из металла.
Г.Герц экспериментально открыл электромагнитные волны и опубликовал результаты своих работ. Виборатор Герца. Открытый колебательный контур.
В результате экспериментов Герц создал источник электромагнитных волн, названный им "вибратором". Вибратор состоял из двух проводящих сфер (в ряде опытов цилиндров) диаметром 10-30 см, укрепленных на концах проволочного разрезанного посредине стержня. Концы половин стержня в месте разреза оканчивались небольшими полированными шариками, образуя искровой промежуток в несколько миллиметров.
Сферы подсоединялись ко вторичной обмотке катушки Румкорфа, являвшейся источником высокого напряжения.
После огромной серии трудоемких и чрезвычайно остроумно поставленных опытов с использованием простейших, так сказать, подручных средств экспериментатор достиг цели. Удалось измерить длины волн и рассчитать скорость их распространения. Были доказаны
наличие отражения, преломления, дифракции, интерференции и поляризации волн. измерена скорость электромагнитной волны
Опыт Столетова
Для того чтобы получить о фотоэффекте более полное представление, нужно выяснить, от чего зависит число вырванных светом с поверхности вещества электронов (фотоэлектронов) и чем определяется их скорость или кинетическая энергия. С этой целью были проведены экспериментальные исследования. В стеклянный баллон, из которого выкачан воздух (для того, чтобы столкновения электронов с молекулами газа не вносили осложнения в наблюдаемые явления, а также для того, чтобы предохранить пластинки от окисления), помещаются два электрода (рис. 1).
Внутрь
баллона на один из электродов поступает
свет через кварцевое «окошко», прозрачное
не только для видимого света, но и для
ультрафиолетового излучения. На электроды
подается напряжение, которое можно
менять с помощью потенциометра R
и измерять вольтметром V.
К освещаемому электроду (катод К)
присоединяют отрицательный полюс
батареи. Под действием света этот
электрод испускает электроны, которые
при движении в электрическом поле
образуют электрический ток. При малых
напряжениях не все вырванные светом
электроны достигают другого электрода
(анод А). Если, не меняя интенсивности
излучения, увеличивать разность
потенциалов между электродами, то сила
тока так же увеличивается. При некотором
напряжении она достигает максимального
значения, после чего перестает изменяться
(рис. 2).
Как
следует из графиков на рисунке 3, б,
величина задерживающего напряжения
увеличивается с увеличением частоты
падающего света. При уменьшении частоты
падающего света Uз уменьшается, и при
некоторой частоте ν0) задерживающее
напряжение Uз0 = 0. При ν < ν0 фотоэффект
не наблюдается. Минимальная частота ν0
(максимальная длина волны ν0) падающего
света, при которой еще возможен фотоэффект,
называется красной границей фотоэффекта.
На основании данных графика 3, б можно
построить график зависимости Uз(ν) (рис.
4, б).