
- •1.Предмет оптики и ее задачи; основные разделы оптики и их краткая характеристика.
- •2.Представления о свете на различных этапах развития оптики; электромагнитная природа света.
- •3.Характеристика оптического диапазона электромагнитных волн.
- •4.Источники и приемники оптического излучения.
- •5.Классификация электромагнитных волн; плоские и сферические электромагнитные волны и возможность их экспериментального осуществления; однородные и неоднородные волны.
- •7.Суперпозиция электромагнитных волн с одинаковыми направлениями колебаний векторов напряженности; биения; стоячие волны и их экспериментальная реализация в оптике.
- •9.Естественный и поляризованный свет; типы и формы поляризации волн.
- •10. Квазимонохроматические волны; Фурье-анализ и Фурье-синтез волновых полей; спектр импульсов излучения; соотношение между продолжительностью импульса и шириной спектра.
- •11.Система энергетических величин: энергетические характеристики излучения; размерность и единицы измерения энергетических величин.
- •12.Система световых величин; единицы измерения световых величин; переход от энергетических к световым величинам; функция видности.
- •13. Интерференция волн и условия её наблюдения; понятие о когерентности; видимость интерференционной картины.
- •14.Общая интерференционная схема; расчет интерференционной картины на основе схемы Юнга.
- •15.Осуществление когерентных волн в оптике: интерференционные схемы с делением волнового фронта – билинза Бийе, бипризма Френеля, зеркало Ллойда, бизеркало Френеля.
- •16.Осуществление когерентных волн в оптике: интерференционные схемы с делением амплитуды волн – интерференция в тонких пластинках; интерференция в клине; кольца Ньютона.
- •17.Линии равного наклона и равной толщины; способы их получения.
- •18.Интерференция немонохроматических световых пучков: временная когерентность; значение размеров источника; пространственная когерентность.
- •19.Многолучевая интерференция; формулы Эйри; интерферометр Фабри – Перо; пластинка Люммера – Герке.
- •20.Интерферометры и интерферометрия: интерферометры Майкельсона, Маха – Цендера, Тваймана - Грина; звездный интерферометр; интерферометр Рождественского.
- •4 2. Экспериментальные явления, сопровождающие распространение света в оптически анизотропной среде; двойное лучепреломление; обыкновенная и необыкновенная волна; поляризационные призмы
- •43.Элементы теории распространения света в анизотропной среде; уравнение волновых нормалей; фазовая и лучевая скорости волн; одноосные и двухосные кристаллы
- •45.Понятие о гиротропии и гиротропных средах; естественная оптическая активность и ее применение в сахариметрии; объяснение естественной оптической активности
- •44.Качественный анализ распространения света в кристаллах с применением построения Гюйгенса; построение Гюйгенса для одноосных кристаллов
- •46.Анизотропия, индуцированная внешним механическим воздействием, и её практическое значение
- •47.Анизотропия, обусловленная действием внешнего электрического поля; эффект Поккельса; эффект Керра; практическое применение электрооптических эффектов
- •48.Анизотропия, обусловленная действием внешнего магнитного поля; эффект Коттона – Мутона, эффект Фарадея и их практическое применение
- •49.Интерференция поляризованного света: условия интерференции поляризованного света; законы Френеля; коноскопические фигуры для одноосных и двуосных кристаллов; изогиры и изохроматы
- •53.Уравнение эйконала и объяснение искривления луча в оптически неоднородных средах
- •50.Поляризационные приборы; четвертьволновые и полуволновые фазовые пластинки; компенсаторы разности фаз
- •51.Получение и анализ поляризованного света; методика проведения качественного анализа состояния поляризации
- •69.Фотоэлектрические приемники с внутренним фотоэффектом: фоторезисторы, фотогальванические элементы и др.
- •52.Основные явления геометрической оптики; основные законы геометрической оптики и границы их применимости; принцип Ферма и его практическое применение
- •54.Центрированная оптическая система; кардинальные элементы центрированной оптической системы; правила знаков
- •55.Простейшие оптические приборы: микроскоп, телескоп, проекционный аппарат; построение изображений этими приборами; разрешающая способность микроскопа и телескопа
- •56.Аберрации оптических систем: астигматизм, сферическая и хроматическая аберрации; влияние аберраций на качество изображения
- •57.Тепловое излучение тел: механизм явления; излучательная и поглощательная способность тела, соотношение между ними; модель абсолютно черного тела
- •58.Основные законы теплового излучения тел: закон Стефана – Больцмана; формула смещения Вина; формула Рэлея Джинса; формула Планка
- •60.Лазер как источник оптического излучения; принцип работы лазера; условие стационарной генерации (баланс фаз и баланс амплитуд).
- •63.Нелинейная поляризация среды в поле интенсивного лазерного излучения; оптическое детектирование и генерация гармоник
- •65.Нелинейно-оптические явления и условия их реализации: вынужденное комбинационное рассеяние света; параметрические эффекты; сложение и вычитание частот
- •64.Самовоздействие света в нелинейной оптической среде; самофокусировка и дефокусировка пучка
- •66.Фотоэффект и его законы: опыты Герца; опыты Столетова
- •67.Невозможность объяснения фотоэффекта на основе классической теории излучения; гипотеза Планка; уравнение Эйнштейна, объяснение законов фотоэффекта на его основе; многофотонный фотоэффект
- •68.Фотоэлектрические приемники оптического излучения с внешним фотоэффектом: вакуумные, газонаполненные фотоэлементы, фотоэлектронные умножители
- •70.Основные характеристики фотоэлектрических приемников излучения; шумы фотоэлектрических приемников и их влияние на характеристики приёмников
- •21.Диэлектрические зеркала и просветление оптики: принцип действия; практическое применение.
- •22. Применение интерференции в рефрактометрии, спектроскопии, метрологии; другие применения интерференции.
- •23. Суть явления дифракции; условия его наблюдения; виды дифракции; условия их реализации; принцип Гюйгенса – Френеля.
- •24.Дифракция Френеля; метод зон Френеля; дифракция на круглом отверстии; зонная пластинка; принцип Бабине; геометрическая оптика как предельный случай волновой оптики.
- •25. Применение векторных диаграмм для анализа дифракционных картин: суть метода векторных диаграмм; дифракция на экране и на краю полубесконечного экрана; спираль Корню.
- •26. Дифракция Фраунгофера на щели, на прямоугольном и круглом отверстиях.
- •27. Дифракция Фраунгофера на регулярных структурах: на одномерной дифракционной решетке; на двумерной дифракционной решетке; на трехмерной дифракционной решетке.
- •28. Спектральный анализ в оптике; призменные спектральные приборы и их основные характеристики.
- •29. Спектральный анализ в оптике; интерференционные и дифракционные спектральные приборы и их основные характеристики.
- •30. Разрешающая способность оптических приборов; предел разрешающей способности (на основе критерия Рэлея).
- •31. Физические основы голографической записи изображений; особенности голограмм как носителей информации.
- •32. Схемы записи и восстановления тонкослойных и толстослойных голограмм; применение голографии.
- •35. Распространение света в проводящих средах; глубина проникновения.
- •36. Дисперсия света в веществе: суть явления дисперсии; классическая электронная теория дисперсии; нормальная и аномальная дисперсия.
- •37. Дисперсия света и дисперсия вещества; экспериментальное изучение дисперсии: метод скрещенных призм; метод Рождественского.
- •38.Поглощение света; закон Бугера – Ламберта – Бера, границы его применимости.
56.Аберрации оптических систем: астигматизм, сферическая и хроматическая аберрации; влияние аберраций на качество изображения
Аберра́ция оптической системы — ошибка или погрешность изображения в оптической системе, вызываемая отклонением луча от того направления, по которому он должен был бы идти в идеальной оптической системе. Аберрацию характеризуют различного вида нарушения гомоцентричности[1] в структуре пучков лучей, выходящих из оптической системы.
Величина аберрации может быть получена как сравнением координат лучей путём непосредственного расчёта по точным геометро-оптическим формулам, так и приближённо — с помощью формул теории аберраций.
При этом возможно характеризовать аберрацию как критериями лучевой оптики, так и на основе представлений волновой оптики. В первом случае отступление от гомоцентричности выражается через представление о геометрических аберрациях и фигурах рассеяния лучей в изображениях точек. Во втором случае оценивается деформация прошедшей через оптическую систему сферической световой волны, вводя представление о волновых аберрациях. Оба способа описания взаимосвязаны, описывают одно и то же состояние и различаются лишь формой описания.
Как правило, если объектив обладает большими аберрациями, то их проще характеризовать величинами геометрических аберраций, а если малыми, то на основе представлений волновой оптики.
Аберрации можно разделить на монохроматические, то есть присущие монохромным пучкам лучей, и хроматические.
еория аберраций ограничивается приближённым представлением составляющих аберраций (δg ' и δG' ) в виде ряда, члены которого содержат некие коэффициенты (суммы переменных) а1, а2,…аk, зависящие только от конструктивных элементов оптической системы и от положения плоскостей объекта и входного зрачка, но не зависящие от координат луча. Так например, меридиональная[2] составляющая аберрации третьего порядка может быть представлена формулой:
где и — координаты луча, входящие в качестве сомножителей членов ряда.Число таких коэффициентов аберраций третьего порядка равно пяти и, как правило, они обозначаются буквами SI, SII, SIII, SIV, SV.
Причём, в целях упрощения анализа, предполагают, что в формулах только один из коэффициентов не равен нулю, и определяет соответствующую аберрацию.
Каждым из пяти коэффициентов определяется одна из так называемых пяти аберраций Зейделя:
SI — сферическая аберрация;
SII — кома;
SIII — астигматизм;
SIV — кривизна поля (поверхности) изображения;
SV — дисторсия.
В реальных системах отдельные виды монохроматических аберраций почти никогда не встречаются. В действительности, наблюдается сочетание всех аберраций, а исследование сложной аберрационной фигуры рассеяния методом выделения отдельных видов аберраций (любого порядка) — не более чем искусственный приём, облегчающий анализ явления.
Хроматические аберрации, обусловленные дисперсией оптических сред, из которых образована оптическая система, то есть зависимостью показателя преломления оптических материалов, из которых изготовлены элементы оптической системы, от длины проходящей световой волны.
Могут проявляться в постороннем окрашивании изображения, и в появлении у изображения предмета цветных контуров, которые у предмета отсутствовали.
К этим аберрациям относятся хроматическая аберрация (хроматизм) положения, иногда называемая «продольным хроматизмом», и хроматическая аберрация (хроматизм) увеличения.
Так же к хроматическим аберрациям принято относить хроматические разности геометрических аберраций, в основном, хроматическую разность сферических аберраций для лучей различных длин волн (так. наз. «сферохроматизм»), и хроматическую разность аберраций наклонных пучков.
Возникает вследствие дифракции света на диафрагме и оправе фотообъектива. Дифракционная аберрация ограничивает разрешающую способность фотообъектива. Из-за этой аберрации минимальное угловое расстояние между точками, разрешаемое объективом, ограничено величиной λ/D радиан, где λ (лямбда) — длина электромагнитной волны светового диапазона (волны с длиной от 400 нм до 700 нм), а D — диаметр объектива.
В оптических системах полностью устранить аберрации невозможно. Их доводят до минимально возможных значений, обусловленных техническими требованиями и ценой изготовления системы. Иногда, также, минимизируют одни аберрации за счёт увеличения других.