
- •1.Предмет оптики и ее задачи; основные разделы оптики и их краткая характеристика.
- •2.Представления о свете на различных этапах развития оптики; электромагнитная природа света.
- •3.Характеристика оптического диапазона электромагнитных волн.
- •4.Источники и приемники оптического излучения.
- •5.Классификация электромагнитных волн; плоские и сферические электромагнитные волны и возможность их экспериментального осуществления; однородные и неоднородные волны.
- •7.Суперпозиция электромагнитных волн с одинаковыми направлениями колебаний векторов напряженности; биения; стоячие волны и их экспериментальная реализация в оптике.
- •9.Естественный и поляризованный свет; типы и формы поляризации волн.
- •10. Квазимонохроматические волны; Фурье-анализ и Фурье-синтез волновых полей; спектр импульсов излучения; соотношение между продолжительностью импульса и шириной спектра.
- •11.Система энергетических величин: энергетические характеристики излучения; размерность и единицы измерения энергетических величин.
- •12.Система световых величин; единицы измерения световых величин; переход от энергетических к световым величинам; функция видности.
- •13. Интерференция волн и условия её наблюдения; понятие о когерентности; видимость интерференционной картины.
- •14.Общая интерференционная схема; расчет интерференционной картины на основе схемы Юнга.
- •15.Осуществление когерентных волн в оптике: интерференционные схемы с делением волнового фронта – билинза Бийе, бипризма Френеля, зеркало Ллойда, бизеркало Френеля.
- •16.Осуществление когерентных волн в оптике: интерференционные схемы с делением амплитуды волн – интерференция в тонких пластинках; интерференция в клине; кольца Ньютона.
- •17.Линии равного наклона и равной толщины; способы их получения.
- •18.Интерференция немонохроматических световых пучков: временная когерентность; значение размеров источника; пространственная когерентность.
- •19.Многолучевая интерференция; формулы Эйри; интерферометр Фабри – Перо; пластинка Люммера – Герке.
- •20.Интерферометры и интерферометрия: интерферометры Майкельсона, Маха – Цендера, Тваймана - Грина; звездный интерферометр; интерферометр Рождественского.
- •4 2. Экспериментальные явления, сопровождающие распространение света в оптически анизотропной среде; двойное лучепреломление; обыкновенная и необыкновенная волна; поляризационные призмы
- •43.Элементы теории распространения света в анизотропной среде; уравнение волновых нормалей; фазовая и лучевая скорости волн; одноосные и двухосные кристаллы
- •45.Понятие о гиротропии и гиротропных средах; естественная оптическая активность и ее применение в сахариметрии; объяснение естественной оптической активности
- •44.Качественный анализ распространения света в кристаллах с применением построения Гюйгенса; построение Гюйгенса для одноосных кристаллов
- •46.Анизотропия, индуцированная внешним механическим воздействием, и её практическое значение
- •47.Анизотропия, обусловленная действием внешнего электрического поля; эффект Поккельса; эффект Керра; практическое применение электрооптических эффектов
- •48.Анизотропия, обусловленная действием внешнего магнитного поля; эффект Коттона – Мутона, эффект Фарадея и их практическое применение
- •49.Интерференция поляризованного света: условия интерференции поляризованного света; законы Френеля; коноскопические фигуры для одноосных и двуосных кристаллов; изогиры и изохроматы
- •53.Уравнение эйконала и объяснение искривления луча в оптически неоднородных средах
- •50.Поляризационные приборы; четвертьволновые и полуволновые фазовые пластинки; компенсаторы разности фаз
- •51.Получение и анализ поляризованного света; методика проведения качественного анализа состояния поляризации
- •69.Фотоэлектрические приемники с внутренним фотоэффектом: фоторезисторы, фотогальванические элементы и др.
- •52.Основные явления геометрической оптики; основные законы геометрической оптики и границы их применимости; принцип Ферма и его практическое применение
- •54.Центрированная оптическая система; кардинальные элементы центрированной оптической системы; правила знаков
- •55.Простейшие оптические приборы: микроскоп, телескоп, проекционный аппарат; построение изображений этими приборами; разрешающая способность микроскопа и телескопа
- •56.Аберрации оптических систем: астигматизм, сферическая и хроматическая аберрации; влияние аберраций на качество изображения
- •57.Тепловое излучение тел: механизм явления; излучательная и поглощательная способность тела, соотношение между ними; модель абсолютно черного тела
- •58.Основные законы теплового излучения тел: закон Стефана – Больцмана; формула смещения Вина; формула Рэлея Джинса; формула Планка
- •60.Лазер как источник оптического излучения; принцип работы лазера; условие стационарной генерации (баланс фаз и баланс амплитуд).
- •63.Нелинейная поляризация среды в поле интенсивного лазерного излучения; оптическое детектирование и генерация гармоник
- •65.Нелинейно-оптические явления и условия их реализации: вынужденное комбинационное рассеяние света; параметрические эффекты; сложение и вычитание частот
- •64.Самовоздействие света в нелинейной оптической среде; самофокусировка и дефокусировка пучка
- •66.Фотоэффект и его законы: опыты Герца; опыты Столетова
- •67.Невозможность объяснения фотоэффекта на основе классической теории излучения; гипотеза Планка; уравнение Эйнштейна, объяснение законов фотоэффекта на его основе; многофотонный фотоэффект
- •68.Фотоэлектрические приемники оптического излучения с внешним фотоэффектом: вакуумные, газонаполненные фотоэлементы, фотоэлектронные умножители
- •70.Основные характеристики фотоэлектрических приемников излучения; шумы фотоэлектрических приемников и их влияние на характеристики приёмников
- •21.Диэлектрические зеркала и просветление оптики: принцип действия; практическое применение.
- •22. Применение интерференции в рефрактометрии, спектроскопии, метрологии; другие применения интерференции.
- •23. Суть явления дифракции; условия его наблюдения; виды дифракции; условия их реализации; принцип Гюйгенса – Френеля.
- •24.Дифракция Френеля; метод зон Френеля; дифракция на круглом отверстии; зонная пластинка; принцип Бабине; геометрическая оптика как предельный случай волновой оптики.
- •25. Применение векторных диаграмм для анализа дифракционных картин: суть метода векторных диаграмм; дифракция на экране и на краю полубесконечного экрана; спираль Корню.
- •26. Дифракция Фраунгофера на щели, на прямоугольном и круглом отверстиях.
- •27. Дифракция Фраунгофера на регулярных структурах: на одномерной дифракционной решетке; на двумерной дифракционной решетке; на трехмерной дифракционной решетке.
- •28. Спектральный анализ в оптике; призменные спектральные приборы и их основные характеристики.
- •29. Спектральный анализ в оптике; интерференционные и дифракционные спектральные приборы и их основные характеристики.
- •30. Разрешающая способность оптических приборов; предел разрешающей способности (на основе критерия Рэлея).
- •31. Физические основы голографической записи изображений; особенности голограмм как носителей информации.
- •32. Схемы записи и восстановления тонкослойных и толстослойных голограмм; применение голографии.
- •35. Распространение света в проводящих средах; глубина проникновения.
- •36. Дисперсия света в веществе: суть явления дисперсии; классическая электронная теория дисперсии; нормальная и аномальная дисперсия.
- •37. Дисперсия света и дисперсия вещества; экспериментальное изучение дисперсии: метод скрещенных призм; метод Рождественского.
- •38.Поглощение света; закон Бугера – Ламберта – Бера, границы его применимости.
50.Поляризационные приборы; четвертьволновые и полуволновые фазовые пластинки; компенсаторы разности фаз
Если на пластинку кристалла турмалина, вырезанную вдоль определенного направления, называемого оптической осью кристалла, направить естественный луч света, то из него выйдет линейно поляризованный свет. Убедиться в линейности поляризации можно, если на пути луча поставить такую же вторую пластинку турмалина. Интенсивность прошедшего света будет максимальной, если плоскости световых колебаний параллельны друг другу. Первая пластинка турмалина, служащая для получения поляризованного света, называется поляризатором, вторая -анализатором. Если угол между плоскостями световых колебаний поляризатора и анализатора равен 90°, то интенсивность прошедшего света равна нулю.
Фазовая пластинка – это оптический элемент, который, не меняя интенсивности и степени поляризации монохроматического поляризованного пучка света, расщепляет его на два компонента, сдвигает фазу одного из них относительно другого и затем вновь соединяет компоненты в один пучок.
Пусть
толщина пластинки
такова, что разность хода упомянутых
компонентов составляет
(пластинка в четверть длины волны):
или
,
m
= 0, 1, 2….(3.8)
В
таком случае
,
и уравнение эллипса принимает вид:
то
есть эллипс ориентирован относительно
главных осей пластинки. Соотношение
длин его полуосей
и
зависит от угла
.
При
и эллипс вырождается в окружность:
.
В
таком случае на выходе из пластинки
свет поляризован циркулярно. Роль
четвертьволновой пластинки для излучения
соответствующего желтой линии натрия
(
нм) успешно выполняет пластинка из
прозрачной слюды толщиной
= 0,027 мм.
Если же пластинка вносит разность хода, равную
,
(3.9)
то
или
,
и эллипс вырождается в прямую
,
то
есть свет остается линейно поляризованным,
но направление колебаний изменяется
на угол (
Помещение на пути пучка пластинки, обеспечивающей разность хода, равную
,
(3.10)
вносит
разность фаз
или
,
вследствие чего эллипс вырождается в
прямую
,
то есть пучок остаётся линейно поляризованным без изменения направления колебаний.
51.Получение и анализ поляризованного света; методика проведения качественного анализа состояния поляризации
Естественный свет, испускаемый любым источником — солнцем, электрической лампой, газовой горелкой и т. д., — не поляризован, то есть он состоит из колебаний, которые не направлены специально ни в вертикальном, ни в горизонтальном, ни в каком-либо другом направлении. Эти световые колебания распространяются во всевозможных плоскостях, перпендикулярных к линии направления света.
Слово «поляризация» означает, что колебания происходят в каком-нибудь одном направлении. Если колебания происходят вертикально, то это значит, что распространяются волны, колебания которых происходят вверху и внизу, то-есть свет поляризован вертикально. Если же мы говорим, что свет поляризован горизонтально, то под этим подразумеваем, что колебания происходят вправо и влево под прямым углом к линии распространения света.
Для получения поляризованного света и его обнаружения существуют специальные физические приборы, называемые в первом случае поляризаторами, а во втором анализаторами. Обычно они устроены одинаково.
Существует.несколько способов получения и анализа поляризованного света.
Поляризация при помощи поляроидов
Поляроиды представляют собой целлулоидные пленки с нанесенным на них тончайшим слоем кристалликов сернокислого нодхинина. Применение поляроидов является в настоящее время наиболее распространенным способом поляризации света.
2. Поляризация посредством отражения
Если естественный луч света падает на черную полированную поверхность, то отраженный луч оказывается частично поляризованным. В качестве поляризатора и анализатора может быть употреблено зеркальное или достаточно хорошо отполированное обычное оконное стекло, зачерненное с одной стороны асфальтовым лаком.
Степень поляризации тем больше, чем правильнее выдержан угол падения. Для стекла угол падения равен 57°.
3. Поляризация посредством преломления
Световой луч поляризуется не только при отражении, но и при преломлении. В этом случае качестве поляризатора и анализатора используется стопка сложенных вместе 10—15 тонких стеклянных пластинок, расположенных к падающим на них световым лучам под углом в 57°.