Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
fizika_mekhanika.docx
Скачиваний:
0
Добавлен:
22.09.2019
Размер:
152.32 Кб
Скачать

Билет 11

Изучая притяжение тел по закону всемирного тяготения, мы встречаемся с гравитационным взаимодействием между телами. Это взаимодействие является одним из видов фундаментальных взаимодействий, существующих в природе. Оно осуществляется на расстоянии без непосредственного контакта между взаимодействующими телами.

Согласно представлениям материалистической науки, любое взаимодействие тел на расстоянии осуществляется посредством материальной среды, называемой полем (и поле, и вещество являются формами существования материи).Гравитационное взаимодействие между телами, описываемое законом всемирного тяготения, осуществляется посредством гравитационного поля (поля тяготения). В каждой точке поля тяготения на помещенное туда тело действует сила тяготения, пропорциональная массе этого тела. Сила тяготения не зависит от среды, в которой находятся тела.Поле тяготения обладает специфическим свойством, состоящим в том, что при переносе тела массой m из одной точки поля тяготения в другую работа силы тяготения не зависит от траектории движения тела, а зависит только от положения в этом поле начальной и конечной точек перемещения тела. Силы, обладающие подобным свойством, называют консервативными, а поле таких сил - потенциальным. Следовательно, поле тяготения является потенциальным полем, а сила тяготения - консервативной силой .Расчет показывает, что работа силы тяготения А в поле тяготения Земли определяется по формуле A=GMm(1/r1-1/r2),    (2.27)

где m - масса тела; M - масса Земли; r1 и r2 - расстояния от центра Земли до начальной и конечной точек перемещения тела.

Космическая скорость (первая v1, вторая v2, третья v3 и четвёртая v4) — это минимальная скорость, при которой какое-либо тело в свободном движении сможет:v1 — стать спутником небесного тела (то есть способность вращаться по орбите вокруг НТ и не падать на поверхность НТ).v2 — преодолеть гравитационное притяжение небесного тела. v3 — покинуть звёздную систему , преодолев притяжение звезды.v4 — покинуть галактику.

Билет 12

Деформация называется упругой, если после прекращения действия внешних сил тело принимает первоначальные размеры и форму. Деформации, которые сохраня

ются в теле после прекращения действия внешних сил, называются пластическими (или остаточными). Деформации реально­го тела всегда пластические, так как они после прекращения действия внешних сил никогда полностью не исчезают

Английский физик Р. Гук (1635— 1703) экспериментально установил, что для малых деформаций относительное уд­линение  и напряжение  прямо про­порциональны друг другу: = E, (21.3)где коэффициент пропорциональности Е называется модулем Юнга. Из вы­ражения (21.3) видно, что модуль Юнга определяется напряжением, вызывающим относительное удлинение, равное единице. Из формул (21.2), (21.3) и (21.1) вы­текает, что

где k — коэффициент упругости. Выраже­ние (21.4) также задает закон Гука, со­гласно которому удлинение стержня при упругой деформации пропорционально действующей на стержень силе.

Деформации твердых тел подчиняются закону Гука до известного предела. Связь между деформацией и напряжением пред­ставляется в виде диаграммы напряже­ний, которую мы качественно рассмотрим для металлического образца (рис. 35). Из рисунка видно, что линейная зависимость  (), установленная Гуком, выполняется

лишь в очень узких пределах до так на­зываемого предела пропорциональности

Вычислим потенциальную энергию упругорастянутого (сжатого) стержня, кото­рая равна работе, совершаемой внешними силами при деформации:

где х — абсолютное удлинение стержня, изменяющееся в процессе деформации от 0 до l. Согласно закону Гука (21.4), F=kx=ESx/l. Поэтому

т. е. потенциальная энергия упругорастянутого стержня пропорциональна квадра­ту деформации (l)2

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]