
- •1. Процесс принятия решений. Три условия принятия решений.
- •2. Принятие решений в условиях определенности. Структура с одним иерархическим уровнем.
- •3. Принятие решений в условиях определенности. Структура с двумя иерархическими уровнями.
- •4. Принятие решений в условиях определенности. Понятие веса и комбинированного веса.
- •5. Принятие решений в условиях определенности. Понятие матрицы парных сравнений.
- •6. Принятие решений в условиях определенности. Понятие нормализованной матрицы.
- •7. Принятие решений в условиях определенности. Пример согласованной матрицы.
- •8. Принятие решений в условиях определенности. Условие согласованности.
- •9. Принятие решений в условиях определенности. Коэффициент согласованности.
- •10. Принятие решений в условиях риска. Сравнение альтернативных решений.
- •11. Принятие решений в условиях риска. Понятие дерева решений.
- •12. Принятие решений в условиях риска. Связь между «состоянием природы» и ожидаемым платежом.
- •13. Принятие решений в условиях риска. Альтернатива на примере ремонта автомобилей.
- •14. Принятие решений в условиях риска. Критерий выбора периодичности ремонта автомобилей.
- •15. Принятие решений в условиях риска. Зависимость вероятности поломки автомобиля от срока эксплуатации.
- •16. Принятие решений в условиях риска. Априорные вероятности.
- •17. Принятие решений в условиях риска. Апостериорные вероятности.
- •18. Принятие решений в условиях риска. Вероятностные соотношения, отражающие мнение специалиста при принятии решения на основе эксперимента над исследуемой системой.
- •19. Принятие решений в условиях риска. Дерево решений при использовании апостериорных вероятностей.
- •20. Принятие решений в условиях риска. Вероятность совместного появления событий m и .
- •21. Принятие решений в условиях риска. Абсолютная вероятность.
- •22. Принятие решений в условиях риска. Выражение для апостериорной вероятности.
- •23. Принятие решений в условиях риска. Понятие функции полезности.
- •24. Принятие решений в условиях риска. Графическое изображение функции полезности.
- •25. Принятие решений в условиях риска. Процедура построения функции полезности.
- •26. Принятие решений в условиях риска. Понятие критерия ожидаемого значения.
- •27. Принятие решений в условиях риска. Составляющие критерия ожидаемого значения – дисперсия.
- •28. Принятие решений в условиях риска. Понятие критерия предельного уровня.
- •29. Принятие решений в условиях риска. Использование критерия предельного уровня в сфере массового обслуживания.
- •30. Принятие решений в условиях риска. Критерий наиболее вероятного исхода.
- •31. Принятие решений в условиях неопределенности. Критерий Лапласа.
- •32. Принятие решений в условиях неопределенности. Минимаксный критерий.
- •33. Принятие решений в условиях неопределенности. Критерий Сэвиджа.
- •34. Принятие решений в условиях неопределенности. Критерий Гурвица.
- •35. Марковские процессы. Понятие матрицы переходных вероятностей и матрицы доходов.
- •36. Марковские процессы. Стационарная стратегия.
- •37. Марковские процессы. Основной смысл решений, принимаемых садовником.
- •38. Марковские процессы. Представление задачи садовника как задачи динамического программирования с конечным числом этапов (основные элементы).
- •39. Марковские процессы. Ожидаемый доход, обусловленный одним переходом.
- •40. Марковские процессы. Понятие обратной прогонки в задаче динамического программирования.
- •41. Марковские процессы. Рекуррентное уравнение динамического программирования при условии изменения переходных вероятностей и функции дохода во времени.
- •42. Марковские процессы. Коэффициент дисконтирования. Его учет в рекуррентном уравнении динамического программирования при конечном числе этапов.
- •43. Марковские процессы. Общая характеристика методов решения задачи с бесконечным числом этапов.
- •44. Марковские процессы. Алгоритм метода полного перебора. Общая характеристика.
- •45. Марковские процессы. Пример вычисления долгосрочных стационарных вероятностей в методе полного перебора в модели с бесконечным числом этапов.
- •46. Марковские процессы. Характеристика результирующей таблицы в методе полного перебора в методе с бесконечным числом этапов.
- •47. Марковские процессы. Недостаток метода полного перебора в модели с бесконечным числом этапов.
- •48. Марковские процессы. Модификация рекуррентного уравнения в методе итераций по стратегиям при бесконечном числе этапов.
- •49. Марковские процессы. Необходимость применения итеративной процедуры в методе итераций по стратегиям при бесконечном числе этапов.
- •50. Марковские процессы. Алгоритм метода итераций по стратегиям при бесконечном числе этапов. Общая характеристика.
- •1.Шаг оценивания параметров:
- •2.Шаг улучшения стратегии:
- •51. Марковские процессы. Критерий выбора оптимального решения в методе итераций по стратегиям при бесконечном числе этапов.
- •52. Марковские процессы. Пример шага оценивания параметров в методе итераций по стратегиям при бесконечном числе этапов.
- •53. Марковские процессы. Пример шага улучшения стратегии в методе итераций по стратегиям при бесконечном числе этапов.
- •58. Марковские процессы. Выражение (основа) для формулировки марковской задачи в виде задачи линейного программирования.
- •59. Марковские процессы. Формулировка Марковской задачи в виде задачи линейного программирования. Постановка задачи.
- •60. Марковские процессы. Пример формулировки задачи садовника без дисконтирования при бесконечном числе этапов в виде задачи линейного программирования.
- •61. Вероятное динамическое программирование. Рекуррентное уравнение об инвестировании.
- •62. Вероятное динамическое программирование. Модель дп для задачи инвестирования.
- •63. Вероятное динамическое программирование. Уравнение состояния для задачи инвестирования.
- •64. Вероятное динамическое программирование. Этап расчета в задаче инвестирования.
- •65. Вероятное динамическое программирование. Понятие максимизация вероятности достижениями.
- •66. Вероятное динамическое программирование. Полная вероятность и функция состояния в задаче максимизации вероятности достижения цели.
- •67. Вероятное динамическое программирование. Пример этапа расчета в задаче максимизация вероятности достижения цели.
- •68. Вероятное динамическое программирование. Модель дп в задаче азартная игра.
- •69. Вероятное динамическое программирование. Функция состояния в задаче азартная игра.
- •70. Вероятное динамическое программирование. Пример этапа в задаче азартная игра.
- •71. Вероятностное динамическое программирование. Оптимальная последовательность действий в задаче азартная игра.
- •72. Методы прогнозирования. Прогнозирование с использованием скользящего среднего. Основные понятия.
- •73. Методы прогнозирования. Выбор количества элементов массива для расчета в методе скользящего среднего.
- •74. Методы прогнозирования. Понятие экспоненциального сглаживания.
- •75. Методы прогнозирования. Рекуррентная формула в методе экспоненциального сглаживания.
- •76. Понятие регрессионного анализа.
- •77. Метод наименьших квадратов.
- •78. Понятие доверительный интервал для среднего значения оценки.
- •79. Понятие интервала предсказаний
- •80. Понятие коэффициента корреляции
- •81. Понятие тренда во временном ряду.
- •82. Модель аддитивных компонентов.
- •83. Модель мультипликативных компонентов.
79. Понятие интервала предсказаний
Интервал предсказания говорит об отдельных предсказаниях значений зависимой переменной, т.е. интервал предсказания для предсказанного значения зависимой переменной предоставляет сведения о диапазоне значений, в котором предположительно будут располагаться значения зависимой переменной при проведении дополнительных наблюдений (с заданным уровнем уверенности).
Как и следовало ожидать, интервал предсказания для значения прогнозируемой величины является более широким, чем доверительный интервал для среднего значения оценки.
80. Понятие коэффициента корреляции
Корреляция – связь между двумя величинами (одна величина – зависимая, другая – независимая).
Коэффициент корреляции r – является наиболее значимым среди многочисленных коэффициентов, использующихся для проверки того, насколько модель соответствует исходным данным.
Коэффициент корреляции r может изменяться в пределах -1…+1.
Если r = ±1, то модель идеально подходит для описания зависимости. При r = 0 величины Y и X могут быть независимыми. В общем случае, чем ближе r к 1, тем лучше подходит модель. На практике значение r является удовлетворительным при значении 1…0,75
Коэффициент корреляции r вычисляется по формуле:
где n – количество испытуемых точек.
-
средние значения.
81. Понятие тренда во временном ряду.
В
методе прогнозирования с использованием
скользящего среднего основное
предположение состоит в том, что временной
ряд является устойчивым в том смысле,
что его члены есть производные случайного
процесса
,
где
-
неизвестный постоянный параметр, который
оценивается на основе представленной
информации, а
-
случайная ошибка, имеющая нулевое
мат.ожидание и постоянную дисперсию.
Рассмотрим пример: имеются данные за 12 месяцев:
Месяц, t |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
Спрос,
|
46 |
56 |
54 |
43 |
57 |
56 |
67 |
62 |
50 |
56 |
47 |
56 |
Ч
тобы
проверить применимость метода скользящего
среднего, проанализируем приведенные
данные. Для этого построим график и
линию тренда.
Чтобы определить тренд, необходимо определить коэффициент автокорреляции (связь между величиной и периодом отставания по времени). Корреляция – связь между двумя величинами, одна из которых – зависимая, а другая – независимая. Коэффициент корреляции всегда меняется от «+1» до «-1». При коэффициенте корреляции = 0 можно сказать, что эти величины независимы.
График показывает, что наблюдается тенденция к возрастанию значений с течением времени (см. линию тренда). Это означает, что скользящее среднее не будет хорошим предсказателем для будущего спроса. В частности использование большой базы n для скользящего среднего неприемлемо в этом случае, т.к. это приведет к подавлению наблюдаемой тенденции в изменении данных. Следовательно, если мы используем небольшое значение для базы n, то будем находиться в лучшем положении с т.з. отображения упомянутой тенденции в изменении данных.