
- •11.Знать определение простейшей рациональной дроби и уметь представлять правильную рациональную дробь в виде суммы простейших дробей
- •12.Знать определение первообразной и доказывать теорему, что две первообразные одной и той же функции отличаются на постоянную
- •13.Доказывать основные свойства неопределённого интеграла
- •14. Выводить формулы замены переменной и интегрирования по частям для неопределенного интеграла
- •Интегрирование по частям
- •15.Выводить формулы интегрирования простейших рациональных дробей
- •16. Излагать приёмы вычисления интегралов вида:
- •17.Знать определение определенного интеграла. Формулировать теорему существования определенного интеграла.
- •18.Доказывать основные свойства определенного интеграла
- •19. Доказывать теорему о среднем.
- •20.Доказывать теорему о производной определенного интеграла по переменному верхнему пределу и выводить формулу Ньютона–Лейбница
- •21.Выводить формулы замены переменной и интегрирования по частям для определенного интеграла
- •22.Выводить формулы, использующие понятие определенного интеграла для его геометрических и механических приложений.
- •27.Знать определение предела и непрерывности функции двух переменных
- •28.Сформулировать свойства функции, непрерывной в замкнутой ограниченной области
- •29.Знать определение частных производных. Уметь выводить формулы производной сложной функции двух переменных, полной производной, производной неявной функции
- •30.Знать определение дифференцируемости функции, доказывать теоремы о необходимом условии дифференцируемости, о достаточном условии дифференцируемости
- •33. Формула касательной к плоскости и нормали
- •34.Необходимые условия экстремума
- •35. Достаточное условие экстремума
- •35. Достаточное условие экстремума (2 вариант)
- •39. Знать определения криволинейных интегралов первого и второго рода и уметь их вычислять
- •41.Знать формулы Грина
14. Выводить формулы замены переменной и интегрирования по частям для неопределенного интеграла
Метод замены переменной
Теорема. Пусть F(z) есть на каком-нибудь промежутке [p, q] первообразная функция для функции f(z). Если φ(x) есть дифференцируемая функция, заданная на промежутке [a, b] и удовлетворяющая неравенствам p ≤ φ(x) ≤ q, то сложная функция F[φ(x)] будет первообразной для функцииf[φ(x)]φ'(x).
В самом деле, дифференцируя сложную функцию y = F[φ(x)], мы должны ввести промежуточный аргумент z = φ(x). Тогда y = F(z), z = φ(x) и y’x=y’z*z’x=F’(z)ϕ’(x) .Так как F'(z) = f(z), то y’x=f(z)ϕ’(x)=f[ϕ(x)]ϕ’(x), чем и доказана теорема.
Доказанную теорему можно формулировать и так: если
То
Отсюда следует
Первое правило подстановки. Чтобы вычислить интеграл
записывая его в форме
заменяем здесь φ(x) на z, вычисляем полученный интеграл и в найденном ответе производим обратную замену z на φ(x).
Интегрирование по частям
Пусть надо вычислить интеграл вида
|
|
|
где v(x) имеет очевидную первообразную V(x).
Тогда
∫ U(x) · v(x) dx = ∫ U(x) · V'(x) dx = ∫ U(x) dV(x) . |
Такого рода преобразование называется подведением под знак дифференциала, поскольку функция v(x) исчезает в интегрируемом выражении и появляется под знаком дифференциала в виде своей первообразной V(x).
Если функция U(x) выражается через функцию V(x) по некоторой формуле U(x) = w(V(x)), то
∫ U(x) dV(x) = ∫ w(V(x)) dV(x) = ∫ w(t) dt , |
где t = V(x). Таким образом отыскание исходного интеграла сводится к отысканию интеграла
∫ w(t) dt
В нем функция t = V(x) выступает как независимая переменная, т.е. произошла замена переменной.
Если функция U(x) не выражается через функцию V(x) по некоторой формуле U(x) = w(V(x)), то может оказаться полезным преобразование, называемое интегрированием по частям. Оно определяется следующей теоремой.
Теорема 1. Пусть функции U(x) и V(x) дифференцируемы на некотором интервале и на этом интервале существует интеграл ∫ V(x)U '(x) dx .
Тогда существует интеграл ∫ U(x)V '(x) dx и справедлива формула
|
∫ U(x)V '(x) dx = U(x)V(x) − ∫ U '(x)V(x) dx. |
(1) |
Замечание 1. Очевидно, что в формуле интегрирования по частям оператор дифференцирования, обозначенный штрихом, перемещается с V на U. Этим обусловлена важная роль формулы при доказательстве самосопряженности линейных дифференциальных операторов.
Замечание 2. Формулу интегрирования по частям удобно применять также в виде
|
∫ U(x) · v(x) dx = U(x) · V(x) − ∫ u(x) · V(x) dx, |
(2) |
где функция v(x) имеет очевидную первообразную V(x) , а U(x) — дифференцируемая функция, причем ее производная u(x) = U'(x) является более простой функцией, чем она сама.
Замечание 3. Формулу интегрирования по частям (1) можно представить в виде в виде
|
∫ U(x) dV(x) = U(x)V(x) − ∫ V(x) dU(x) . |
(3) |