Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции-ЭПУ-Бычков.doc
Скачиваний:
45
Добавлен:
22.09.2019
Размер:
9.35 Mб
Скачать

6.3. Преобразователи частоты

При конструировании устройств электропитания для аппарату­ры автоматики и связи возникает необходимость преобразования тока одной частоты в ток другой частоты, с высокими энергети­ческими показателями. Это преобразование может быть выполнено различными устройствами. В схеме (см. рисунок 6.1) переменный ток с исходной частотой f1 выпрямляется обычным выпрямителем. Выпрямленным напряже­нием питается инвертор, вырабатывающий переменное напряжение требуемой частоты f2. Для регулировки выходного напряжения можно использовать управляемые выпрямители, а для регулировки частоты-схемы управления частотой инвертора. Таким образом преобразователи частоты этого типа представляют собой совокуп­ность обычных выпрямителей и инверторов.

Для питания рельсовых цепей, на участках электрифицирован­ных железных дорог с электротягой переменного тока промышлен­ной частоты (50 Гц), а также с электротягой постоянного тока, используют параметрические преобразователи частоты. Принцип параметрического преобразования частоты основан на том, что принудительное изменение какого-либо параметра колебательного контура (L.или С) вызывает в нем колебания с частотой, в опреде­ленное число раз отличающейся от той, с которой изменяется параметр. Если потери в контуре будут компенсироваться за счет внешнего источника энергии, то эти колебания будут незатухающи­ми. Схема контура (рисунок 6.9,а) состоит из дросселя L, конденсатора С, резистора R и источника тока Е. Если емкость конденсатора С периодически изменять по косинусоидальному закону, то ток в контуре будет изменяться по синусоидальному закону частотой, в 2 раза меньшей. Проще изменять индуктивность дросселя, изменяя подмагничивание его сердечника.

Преобразователи частоты (рисунок 6.10, а) выполнены на двух П-образных сердечниках. На крайних стержнях размещены обмотки подмагничивания Фп1 и Фп2, которые соединены так, чтобы созда­ваемые в средних стержнях потоки Фп1 и Фп2 были направлены встречно. На средних стержнях сердечников размещена контурная обмотка wK, индуктивность которой совместно с емкостью конден­сатора С образует колебательный контур с резонансной частотой 25 Гц. Обмотки wП1 и wП2, подключены к сети переменного тока через диод VD, который обеспечивает однополупериодное выпрям­ление. Если бы обмотки обладали только активным сопротивлением, то кривая выпрямленного тока повторяла бы форму выпрям­ленного напряжения (рисунок 6.10,6). Наличие индуктивности искажает форму тока. Ток подмагничивания iп проходит через обмотки в течение большего времени, чем длительность одного полупериода напряжения в сети. Ток подмагничивания iП (рисунок 6.10,в) содержит только первую гармонику с амплитудой Iт и постоянную состав­ляющую I0. Эта же кривая в соответствующем масштабе характе­ризует изменение магнитных потоков Фп1 и Фп2 и магнитной индукции Вп1, Вп2 в сердечниках. При увеличении магнитной индук­ции увеличивается степень насыщения сердечников и уменьшается их магнитная проницаемость μ (рисунок 6.10, г). Следовательно, индук­тивность контурной обмотки будет изменяться по тому же закону с частотой сети fс = 1с. Правую и левую половины преобразователя невозможно выполнить совершенно одинаковыми. Поэтому один из магнитных потоков Фп1 или Фп2 будет преобладать. В контурную обмотку из сети поступит энергия.

Рисунок 6.9 – Схема контура (а) и зависимости емкости конденсатора и тока в контуре от времени (б)

Рисунок 6.10 – Схема параметрического преобразователя частоты (а) и зависимости напряжений и токов от времени (б-д)

Как только в обмотке wK, начнет проходить ток, в сердечниках появятся потоки Фя1 и Фж2, которые будут направлены в одном стержне согласно с потоком подмагничивания, в другом - встречно. При этом симметрия состояния насыщения сердечников наруша­ется, и в контурную обмотку из сети начнут поступать импульсы энергии. Для того чтобы в контуре могли существовать неза­тухающие колебания, необходимо, чтобы энергия, запасаемая за счет индуктивности обмотки wK и емкости конденсатора СК, была бы равна энергии, расходуемой на питание GR и на потери в элементах преобразователя G, т.е.

.

При уменьшении индуктивности контурной обмотки LK напряже­ние на конденсаторе С будет возрастать (рисунок 6.10,д). Период изменения напряжения в контуре Тк в 2 раза больше, чем в сети переменного тока Тс. Следовательно, частота тока в нагрузке будет в 2 раза ниже частоты в сети.

Отличительной особенностью преобразователей этого типа яв­ляются их хорошие стабилизирующие свойства. Они устойчиво работают при значительных изменениях напряжения на входе, сохраняя неизменным напряжение переменного тока с частотой 25 Гц на выходе. Они не нуждаются в защите от коротких замыка­ний или перегрузок. Если ток нагрузки преобразователя превышает значение, определяемое его расчетной мощностью, то преобразова­тель перестает работать, а ток, потребляемый им из сети, не превышает тока нормальной работы. После устранения перегрузки работа преобразователя автоматически восстанавливается.

При эксплуатации часто используют целую группу преобразова­телей частоты, питающих отдельные нагрузки. В этом случае за счет асимметричной нагрузки, создаваемой преобразователями (ис­пользуется только один полупериод тока частоты 50 Гц), возможно искажение формы напряжения питающей сети. Кроме того, если преобразователи питаются через общий разделительный трансфор­матор, то возможно увеличение потерь в этом трансформаторе за счет вынужденного намагничивания сердечника. Для предотвраще­ния этих явлений преобразователи разбивают на две группы и включают таким образом, чтобы использовались оба полупериода напряжения сети.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Назовите и охарактеризуйте преобразователи параметров электрического тока.

2. Каков принцип действия однотактной схемы инвертора на транзисторе с внешним возбуждением?

3. Каков принцип действия двухтактной схемы инвертора на транзисторах с самовозбуждением?

4. Каков принцип действия двухтактной схемы инвертора на тиристорах?

7. ПРИНЦИП ПОСТРОЕНИЯ УНИВЕРСАЛЬНОГО БЕСПЕРЕБОЙНОНГО

УСТРОЙСВА ЭЛЕКТРОПИТАНИЯ В ЭЛЕКТРОСВЯЗИ

На сети связи широкое применение получила буферная система электропита­ния постоянного тока. Характерной осо­бенностью устройств бесперебойного электропитания (УБП), реализуемых по указанной системе, является объединение в одной точке выходов преобразователей-выпрямителей (УПВ), аккумуляторной батареи (АБ) и питаемой нагрузки. Такая структура позволяет получить достаточно высокую надежность подаваемой на аппа­ратуру связи электроэнергии при минима­льном количестве используемых для ее построения компонентов.

Буферная система электропитания

Коэффициент полезного действия (КПД) таких УБП определяется в ос­новном КПД применяемых УПВ, кото­рый по данным фирм-изготовителей может достигать 91-94%. Однако буфер­ная система при всех ее достоинствах обладает двумя заметными недостат­ками.

Во-первых, в буферных УБП на каж­дый номинал выходного напряжения применяют отдельную АБ, т.е. в УБП на выходные напряжения -48 и 60 В следует установить две АБ, каждая из которых рассчитана на свой номинал. Возможно использование АБ одного номинала, но такое решение потребует включения на выходе буферного канала дополнительного преобразователя по­стоянного тока в постоянный (DC-DC) для получения напряжения второго ка­нала. При этом во втором канале вы­ходного напряжения используется до­полнительное преобразование энергии, а буферный канал реализуют на полную выходную мощность УБП, что приводит к снижению КПД устройства в целом, а также к уменьшению его надежности.

Во-вторых, выходное напряжение бу­ферных УБП может изменяться в широ­ких пределах, определяемых разрядно-зарядными характеристиками АБ. Такое положение привело к тому, что в норма­тивных документах на питаемую аппа­ратуру связи (в ГОСТ или технических требованиях) обозначаются широкие пределы рабочего напряжения, например ±20% от номинального значения -60 В. Если же аппаратура рассчитана на более узкие допуски питающего напряжения, то применяются дополнительные стаби­лизаторы напряжения, подключаемые к выходу буферного канала. Это также

ведет к снижению КПД и надежности УБП.

Описание универсального УБП. На рис. 1 показана функциональная схема универсального УБП постоянного и пе­ременного тока, которая свободна от указанных выше недостатков.

Устройство содержит сетевой выпря­митель (В), зарядно-буферный преобра­зователь (ЗБП), АБ и преобразователи напряжения ПН1 и ПН2 по числу тре­буемых независимых выходов постоян­ного и переменного тока.

Сетевой выпрямитель 1 собран по бестрансформаторной схеме и содержит сетевые фильтры, выпрямительный мост и корректор угла сдвига потребляемого от сети тока и напряжения. Выпрямитель не содержит высокочастотного пре­образователя. ЗБП4 выполнен по схеме высокочастотного преобразования с интегральным широтно-импульсным (ИШИМ) регулированием выходного на­пряжения и предназначен для заряда и содержания АБ.

Высокочастотные преобразователи ПН1 и ПН2 с ИШИМ регулированием обеспечивают получение бесперебойного постоянного (ПН1) и переменного (ПН2) напряжения для питания нагрузок. АБ 19 обеспечивает питание нагрузок при от­ключении внешней сети переменного тока 2.

Устройство работает следующим об­разом. Напряжение внешней сети 2 по­дается на входные выводы сетевого выпрямителя 1, от выходных выводов которого постоянное напряжение 3 по­ступает на коммутаторы импульсов (КИУ) 9 и 14, а также на инверторы (И) 10 и 15 преобразователей ПН1 и ПН2. Если напряжение сети 2 находится в заданных пределах, то КИУ выраба­тывает сигнал, коммутирующий импу­льсы управления с выходов узлов упра­вления (УУ) 8 и 13 на входы инверторов 10 и 15, которые и преобразуют постоян­ное напряжение в переменное повышен­ной частоты прямоугольной формы. Это напряжение поступает на одну из пер­вичных обмоток трансформатора вы­прямителя (В) 12 и далее выпрямляется для питания нагрузки преобразователя ПН1.

Для нагрузки переменного тока пред­назначается преобразователь ПН2, от­личающийся от ПН1 наличием инверто­ра 18 на выходе. Выходное напряжение выпрямителя 1 одновременно подается на вход ЗБП 4, к выходу которого подключается АБ 19, и входы инверто­ров 11, 16, выходы которых подключены к первичным обмоткам выпрямителей 12, 17. При отключении сети переменно­го тока или повреждении выпрямителя 1 КИУ 9 и 14 подключают УУ 8 и 13 к вторым первичным обмоткам трансформаторов выпрямителей 12 и 17. и преоб­разователи продолжают бесперебойно выдавать электроэнергию для электро­питания нагрузок.

Отличие данной схемы от буферной состоит в том, что в ней подсистема заряда и содержания резервной АБ вы­делена в отдельную структуру только на выходную мощность, необходимую для заряда АБ, а преобразователи напряже­ния выходных каналов выполнены с двумя входными выводами постоянного тока: от промышленной сети переменно­го тока и резервной АБ.

В данном УБП при питании нагрузок постоянного тока отсутствует двойное преобразование энергии, выходные на­пряжения не зависят от напряжения АБ, а их нестабильность - от режима заряда-разряда АБ.

Один из вариантов конструктивного исполнения оборудования универсально­го УБП показан на рис. 2. Оборудование размещается в типовом шкафу с габари­тами 600 х 2000 х 600мм.

УБП содержит три канала выходного напряжения:

первый: выходное напряжение по­стоянного тока - 60 В, номинальная мощность нагрузки - 2,4 кВт, максима­льная - ЗкВт;

  • второй: выходное напряжение по­стоянного тока -- 48 В. Номинальная мощность нагрузки - 2,4 кВт, максима­льная - ЗкВт;

  • третий: выходное напряжение пере­менного тока 220 В, 50 Гц, номинальная мощность нагрузки - 1,2 кВт, максима­льная - J,8 кВт.

Используются резервные АБ Net Po­wer 12V lOOAh "Hoppecke" (9 шт). Время работы oi АБ при номинальной мощно­сти - не менее 1 ч

Мощность преобразовательных мо­дулей выбрана, исходя из заданной вы­ходной мощности каждого отдельного канала, питающего нагрузки, и оптима­льной мощности комплектующих сило­вых элементов без параллельного их соединения в составе каждого мо­дуля. Габаритные размеры модулей -60132460 мм. Расчетная мощность силового модуля - 600 Вт.

Поскольку указанное УБП предназ­начено для электропитания аппаратуры связи, то все ее технические характери­стики отвечают требованиям отраслево­го стандарта ОСТ45.183-2001. На разра­ботанное оборудование получен Серти­фикат соответствия Минсвязи России.

Переходные характеристики. Пред­ставляют интерес характеристики, пока­зывающие поведение оборудования в переходных режимах работы, например, при отключении и восстановлении внеш­него источника электроэнергии перемен­ного тока и динамических сбросов и выбросов нагрузки. В качестве иллюстра­ций указанных режимов можно привести осциллограммы напряжений, снятые в канале на выходное напряжение - 24 В.

На рис. 3 приведены осциллограммы напряжений при номинальной нагрузке 2400 Вт при восстановлении внешней сети (рис. 3,а) и ее отключения (рис. 3,6). Из осциллограмм следует, что коле­бания напряжения не превышают ±0,6%, а время переходного процесса 100 мс.

На рис. 4 приведены осциллограммы напряжения при сбросах (в) и выбросах (б) нагрузки. Полученные результаты показывают, что при работе от внешней сети переменного тока (рис. 4,б,е), а также изменениях нагрузки от 100 до

Рис.3

Рис. 4