Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции-ЭПУ-Бычков.doc
Скачиваний:
44
Добавлен:
22.09.2019
Размер:
9.35 Mб
Скачать

5.3. Феррорезонансные и параметрические стабилизаторы напряжения

Феррорезонансные стабилизаторы напряжения. Электромагнит­ные стабилизаторы напряжения, в которых используют резонанс­ные контуры, называют феррорезонансными. Их применяют в ка­честве маломощных стабилизаторов переменного напряжения и как опорные (эталонные) источники напряжения. Чаще всего их выпол­няют на одном сердечнике из трансформаторной стали Ш-образной формы с тремя стержнями (рисунок 5.8, а). Площадь поперечного сечения крайних стержней значительно меньше среднего. Кроме того, левый стержень имеет воздушный зазор δ, выполняющий роль магнитного шунта, снижающего внешний поток рассеивания и уменьшающего влияние феррорезонансного стабилизатора напря­жения на работу соседних устройств. На среднем и правом стержнях размещаются обмотки: первичная w1 и компенсационная wк - на среднем, вторичная w2 и дополнительная wд - на правом. Компенса­ционная обмотка имеет число витков в 3-6 раз меньшее, чем вторичная обмотка, поэтому напряжение на ней относительно невелико. Она включена последовательно с вторичной обмоткой и навстречу ей.

При включении входного напряжения в первичной обмотке будет протекать ток, который создаст магнитный поток Ф в среднем стержне. Этот поток разветвляется на два: Ф2 - поток, протекающий в правом стержне, и Ф1 - поток, протекающий в левом стержне. При малых напряжениях поток Ф1 мал, так как на его пути имеется воздушный зазор δ, представляющий собой большое сопротивле­ние. Основная часть потока Ф будет замыкаться через правый стержень - поток Ф2, обусловливающий возникновение напряжений U2 и Uд. С увеличением входного напряжения Uвх будет пропор­ционально увеличиваться напряжение U2 (рисунок 5.8, б). При даль­нейшем увеличении входного напряжения наступает насыщение правого стержня, и с этого момента магнитный поток Ф2 будет изменяться мало, начнет увеличиваться поток Ф1. Напряжение U2 при этом изменяется незначительно - начинается процесс стабили­зации. Для повышения стабильности выходного напряжения служит компенсационная обмотка, напряжение в которой изменяется про­порционально входному напряжению. Так как компенсационная обмотка включена встречно с вторичной обмоткой, то результи­рующее напряжение на нагрузке равно их разности Uн = U2 — UК. Следовательно, небольшие изменения напряжения U2 будут ском­пенсированы напряжением Uк, а напряжение на нагрузке будет более стабильно (кривая UН).

Рисунок 5.8 – Схема феррорезонансного стабилизатора напряжения (а) и зависимости напряжений U2, UK и UH от UBX (б)

Вторичная обмотка вместе с дополнительной, зашунтированные конденсатором С (см. рисунок 5.8, а), образуют колебательный контур, настроенный на частоту сети. Этот контур создает дополнительное насыщение правого стержня и улучшает стабилизирующие свойства феррорезонансного стабилизатора.

Феррорезонансные стабилизаторы можно изготавливать из стальных пластин различной конфигурации. Настройка и регули­ровка их осуществляются с помощью подключения различных отводов или изменения воздушного зазора магнитного шунта. В зависимости от типа применяемых пластин и мощности эти стабилизаторы имеют различные обозначения: СН-250, СТ-200, С-0,09 и т.д.

К достоинствам электромагнитных стабилизаторов напряжения относятся: возможность получения переменного напряжения высо­кой стабильности при значительных колебаниях напряжения сети; безинерционность действия, устойчивость электрических данных, простота конструкции и небольшая стоимость.

Наряду с достоинствами феррорезонансные стабилизаторы об­ладают и некоторыми существенными недостатками, ограничи­вающими область их применения: относительно невысокий к. п. д. (0,7-0,85), зависимость выходного напряжения от частоты сети; искажение формы выходного напряжения, для исправления которой требуется применение специальных фильтров; зависимость выход­ного напряжения от характера нагрузки; наличие значительных магнитных полей рассеяния.

Параметрические стабилизаторы напряжения. Одним из простей­ших полупроводниковых стабилизаторов является параметрический стабилизатор напряжения (рисунок 5.9, а). Кремниевый диод (стабили­трон) VD1, включенный в обратном направлении, является стабили­зирующим элементом. При малом обратном напряжении через стабилитрон протекает ток, мало зависящий от напряжения, как и в обычных диодах. Увеличение этого напряжения вызывает электрический пробой запорного слоя стабилитрона. В этом состоянии изменение тока в широких пределах почти не вызывает изменения напряжения на стабилитроне. Если мощность, выделяе­мая на стабилитроне, не превышает допустимую, то состояние пробоя может существовать бесконечно долго (десятки тысяч часов) и повторяться при включении и выключении диода. Это напряжение пробоя и является напряжением стабилизации Uст.

Рисунок 5.9 – Схема параметрического стабилизатора напряжения (а) и вольт-амперная характеристика стабилитрона (б)

Точка А на вольтамперной характеристике стабилитрона (рисунок 5.9, 6) соответствует пробою стабилитрона, который происхо­дит при напряжении Uст min. В режиме пробоя (стабилизации) стабилитрон работает до напряжения Uст max при максимальном токе Iст max (точка В), что соответствует максимальной мощности рассеяния . При дальнейшем увеличении тока мощность, выделяемая на стабилитроне, превысит допустимую и может произойти тепловой пробой (разрушение p-n - перехода).

Прямая ветвь вольтамперной характеристики стабилитрона тоже достаточно крутая, и может быть использована для стабили­зации малых напряжений от 0,5 до 0,8 В при включении стабили­трона в прямом направлении.

В схеме (см. рисунок 5.9, а) через ограничивающий резистор R0 протекает общий ток I0, равный сумме токов стабилитрона и нагрузки Iн, т. е. I0 = Iст +Iн. При этом входное напряжение UВХ распределяется на резисторе R0 и на нагрузке Rт: .

Напряжение нагрузки равно напряжению на параллельно вклю­ченном стабилитроне Uн = UСТ, которое определяется соотноше­нием: UСТ = Iст · rд, где - динамическое (дифференци­альное) сопротивление стабилитрона (см. рисунок 5.9, б).

При увеличении входного напряжения в начальный момент времени напряжение на нагрузке также стремится к увеличению. Это незначительное изменение напряжения, прикладываемого к ста­билитрону (в соответствии с его вольтамперной характеристикой), вызывает резкое увеличение тока, протекающего через него. При этом возрастает и общий ток I0, что приводит к увеличению падения напряжения на гасящем сопротивлении R0. Напряжение на нагрузке увеличится на UСТ. Это изменение будет тем меньше, чем меньше дифференциальное сопротивление стабилитрона. Следова­тельно, изменение напряжения на входе стабилизатора UВХ рас­пределяется на гасящем сопротивлении и на нагрузке UН = UСТ, т. е. - При соблюдении соотношения R0>>rД, что всегда обеспечивается в параметрических стабилизаторах, , тогда .

С уменьшением входного напряжения уменьшается ток стаби­литрона и снижается падение напряжения на сопротивлении R0. Таким образом, все изменения входного напряжения будут ском­пенсированы изменением падения напряжения на гасящем сопро­тивлении. Колебания напряжения на нагрузке будут определяться изменениями напряжения на стабилитроне UСТ, т.е. напряжение на нагрузке остается практически постоянным.

Изменения тока нагрузки при постоянном входном напряжении будут вызывать обратные изменения тока стабилитрона (с увеличе­нием тока Iн уменьшается ток Iст). Общий ток I0, протекающий через гасящее сопротивление, практически не изменится, что обес­печит постоянство напряжения на нем, а следовательно, и на нагрузке (на выходе стабилизатора).

Напряжение на выходе параметрического стабилизатора опре­деляется опорным напряжением стабилитрона. Для получения бо­лее высоких напряжений на выходе параметрического стабилиза­тора напряжения стабилитроны включают последовательно.

Расчет параметрического стабилизатора напряжения можно выполнить, располагая исходными значениями: Uвх max; Uвх min; UH max; Uн; UH min; Iн; Iн [10].

По опорному напряжению, максимально допустимому току и номинальной мощности выбирают тип стабилитрона. Макси­мально допустимый ток определяется из соотношения:

.

Сопротивление гасящего резистора должно быть выбрано таким, чтобы при напряжении Uвх min ток стабилитрона не умень­шился бы ниже тока Iст min (см. рисунок 5.9, а), а при напряжении UВХ max ток . Сопротивление

.

Выходное сопротивление стабилизатора , т.е. определяется динамическим сопротивлением стабилитрона.

Мощность, рассеиваемая на стабилитроне, не должна превы­шать номинальную . Коэффициент стабилизации по напряжению определяется из соотношения или из выражения (5.3).

Абсолютная нестабильность выходного напряжения, обуслов­ленная колебаниями входного напряжения и изменением темпера­туры окружающей среды,

,

где αст - температурный коэффициент, находится из технических данных;

Т - разность температур (диапазон изменения температуры окружаю­щей среды).

Как известно, кремниевые стабилитроны, включенные в обрат­ном направлении, обладают положительным (при Uст ном > 5 В) или отрицательным (при Uстном < 5 В) температурным коэффициентом. Для уменьшения температурной нестабильности в полупроводни­ковых стабилизаторах последовательно со стабилитроном в пря­мом направлении включают германиевый диод VD2 (один или несколько) (см. рисунок 5.9, а).

С повышением температуры напряжение лавинного пробоя ста­билитрона повышается, а прямое сопротивление диода уменьша­ется. При определенном соотношении сопротивлений диода и ста­билитрона может быть достигнута компенсация, т.е. выходное напряжение параметрического стабилизатора напряжения будет мало зависеть от температуры. Для этих целей промышленность выпускает стабилитроны, выполненные в одном корпусе вместе с термокомпенсирующим диодом.

К достоинствам параметрических стабилизаторов относятся простота схемы, низкая стоимость, небольшие масса и габаритные размеры.

Однако параметрические стабилизаторы напряжения обладают и рядом существенных недостатков: довольно значительное выход­ное сопротивление; невозможность получения точного определен­ного значения выходного напряжения, а также плавной его регули­ровки; невысокий коэффициент стабилизации напряжения порядка 20-60; к. п. д. ≈ 30%; маломощны; токи нагрузки ограничиваются максимально допустимыми токами стабилитронов; не допускается параллельного включения стабилитронов, так как из-за различия сопротивлений токи через них будут распределяться неодинаково.

Для получения больших токов нагрузки, значительно превы­шающих токи стабилитрона, а также получения более высоких качественных показателей применяют компенсационные стабилиза­торы напряжения.