Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ГОС Ответы на вопросы 17 и др.doc
Скачиваний:
4
Добавлен:
21.09.2019
Размер:
677.38 Кб
Скачать

3.5. Сжатие данных

Общей проблемой при обработке различных потоковых данных является их объем. Практически всегда качество воспроизведения оцифрованного потока зависит от частоты дискретизации, а чем больше частота — тем больше объем.

Для решения этой проблемы при хранении и распространении цифровых данных, в особенности видео и аудио, применяют различные методы сжатия.

Под сжатием понимается применение алгоритмов преобразования фрагментов данных, позволяющих при прямом преобразовании (сжатии, упаковке) уменьшить размер данных (т.е. количество битов в конечном блоке меньше, чем в исходном), а при обратном преобразовании восстановить исходные данные в годном для использования виде.

Различают две основные группы методов сжатия: методы сжатия без потерь, которые позволяют восстановить исходные данные без каких-либо изменений, и методы сжатия с потерями, которые восстанавливают данными с отличиями, но эти отличия оказываются допустимыми с точки зрения дальнейшего использования.

В качестве примеров алгоритмов сжатия графических данных без потерь можно привести алгоритм RLE. При применении этого алгоритма вместо последовательности одинаковых по цвету пикселей в строке изображения записывается цвет и количество его повторений. Такой подход используется при хранении изображений в формате BMP.

Для сложных изображений такой метод малоэффективен, поэтому в промышленных форматах применяют другие методы. Например, один из универсальных алгоритмов LZW (назван по фамилиям авторов Якоб Лемпель, Абрахам Зив и Терри Велч). Этот алгоритм подразумевает создание во время обработки специального словаря уже встречавшихся фрагментов. При кодировании последовательности байтов заменяются на их номера по словарю, причем номера часто встречающихся последовательностей имеют меньшее количество битов, чем редко встречающихся. Этот способ активно применяется при сжатии самых разных данных, в том числе и графических. Такой способ сжатия применяется в графическом формате TIFF, в популярном формате GIF. Аналогичные методы применяются и в современном формате PNG (Portable Network Graphic), разработанном специально для применения в сетевых приложениях.

Нужно отметить, что алгоритмы сжатия применяются не только для работы с графическими данными (где они фактически необходимы), но и для хранения и пересылки других данных. Программы, реализующие применение этих методов, получили название архиваторов. Современные архиваторы при упаковке данных позволяют сохранять файловую структуру, применяют сложные комбинации методов сжатия в зависимости от типа и особенностей упаковываемой информации. Методы сжатия используют такое общее свойство представления информации в цифровом виде, как избыточность.

С появлением средств оцифровки изображений появилась существенная проблема: в фотоизображениях практически не встречались точно повторяющиеся последовательности точек. С учетом роста частоты дискретизации и небольшой емкости носителей, это затрудняло их обработку и применение. Фактически средний жесткий диск мог хранить только 45–50 изображений высокого качества.

Для решения этой проблемы группой специалистов был разработан специальный формат и способ сжатия, получивший название JPEG (Joint Photographic Expert Group, объединенная группа экспертов-фотографов). Алгоритм сжатия, предложенный ими, подразумевал сжатие с потерей качества. Его достоинством было то, что “силу” сжатия можно было указывать изначально и таким образом находить компромисс между качеством и объемом изображения. Первый стандарт этого алгоритма был принят в 1991 году.

Алгоритм JPEG предусматривает перевод изображения в более пригодную для сжатия цветовую модель — YСrCb (Яркость, Хроматический красный, Хроматический синий). За счет того, что человеческий глаз более чувствителен к яркости, чем к цвету, появляется возможность сжимать цветовые компоненты сильнее. В дальнейшем операции над компонентами выполняются отдельно. Изображение разбивается на фрагменты размером 8 ґ 8 пикселей, и внутри объектов выполняется целый ряд преобразований, некоторые из которых сглаживают разницу между пикселями. В зависимости от заданного параметра степени сжатия можно сглаживать разницу сильнее или слабее.

При использовании высоких степеней сжатия изображение чувствительно портится: становится заметно разделение на квадраты и изменение частот в них, появляются своеобразные “ореолы” вокруг четко очерченных объектов.

Алгоритм JPEG — один из базовых алгоритмов сжатия изображений. Его широкое распространение позволило резко расширить возможности и сферу применения цифровых методов обработки изображения. Несмотря на то, что существовали и существуют методы, обеспечивающие более высокое качество и степень сжатия, этот алгоритм получил широкое распространение за счет низких аппаратных требований и высокой скорости работы.

Следующим шагом стала разработка группы методов, предназначенных для сжатия потоковых данных (видео и аудио). Существенной особенностью этих данных является их очень большой объем и постепенное изменение (из-за высокой частоты между двумя соседними кадрами, как правило, разница невелика). Сжатый видео- и/или аудиопоток характеризуется чаще всего общим показателем битрейтом (bit rate — битовая скорость) — количеством битов на одну секунду использования, которое получается после упаковки.

Первым был разработан и принят в 1992 году стандарт MPEG-1, включавший в себя способ сжатия видео в поток до 1,5 Мбит, аудио в поток 64, 128 или 192 Кбит/с на канал, а также алгоритмы синхронизации. Стандарт описывал не алгоритмы, а формат получающегося битового потока. Это позволило в дальнейшем разработать множество реализаций алгоритмов кодирования и декодирования. Стандарт применялся для создания видео и CD.

Особенную популярность завоевала реализация MPEG-1 для упаковки звука. Применяется для этого стандарт MPEG-1 Layer 3 (сокращенно названный MP3). При сжатии этим методом используется сжатие с потерей информации. Причем учитывается особенность слухового восприятия: если рядом расположены две частоты, то более громкая “перекрывает” более тихую. Таким образом, ее можно сгладить без ощутимой потери качества звука.

Следующим шагом была разработка и принятие в 1995 году стандарта MPEG-2, предусматривающего работу с более качественным видеопотоком, скорость которого могла изменяться от 3 до 10 Мбит/с. Эта группа методов применяется при создании DVD-дисков.

Группа стандартов, получившая позднее название MPEG-4, изначально проектировалась для работы с очень низкими потоками, но в дальнейшем претерпела много изменений. В основном эти изменения касались введения интеллектуальных методов — например, описания параметров отображения лиц или синтеза речи.

Несмотря на большое разнообразие, в основе всех этих алгоритмов лежит общий подход к кодированию/декодированию. Во-первых, одной из основ сжатия кадров является алгоритм JPEG. В рамках этого подхода рассматриваются три вида кадров: ключевой кадр, сохраняемый в потоке полностью (intrapictures), кадры, сжатые со ссылкой на предыдущее изображение (predicted), и кадры, ссылающиеся на два кадра (bidirection).

В случае использования ссылок на кадры записывается и сжимается не весь кадр, а только его изменившиеся части. Двунаправленные и ключевые кадры позволяют сократить накапливающиеся ошибки. Во время сжатия каждое изображение разбивается на макроблоки, разбивающие кадр на отдельные квадраты по 16 пикселей (алгоритм разбиения значительно сложнее, но в этом тексте он подробно не рассматривается). Отсюда вытекает ограничение: размеры кадра должны быть кратны 16.

Поскольку алгоритмы в стандарте не описаны впрямую, существует большое количество различных их реализаций. Зачастую результаты работы этих реализаций сильно различаются по качеству изображения — в зависимости, например, от методики расстановки ключевых кадров. Конкретное кодирование и декодирование выполняется набором программ, получившим название кодеков.

Технически кодеки — отдельные программы, вызываемые проигрывателями для декодирования потока, а средствами сохранения — для его сжатия. Кодек отмечается в начале файла (или сетевого потока), и его наличие — важное условие работы с мультимедиа-данными. Многие кодеки не поставляются с операционной системой, а устанавливаются дополнительно. Для удобства их часто собирают в пакеты (codec-pack).

Примеры программных средств

DivX, XviD, Lame MP3 encoder, QuickTime