Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Otvety_k_ekzamenu (2).docx
Скачиваний:
245
Добавлен:
21.09.2019
Размер:
151.84 Кб
Скачать

19. Структурно-функциональные основы образования и хранения временных связей при формировании условных рефлексов. Память, виды памяти и ее физиологические механизмы.

В процессе условнорефлекторной деятельности постоянно совершается анализ и синтез раздражений внешней и внутренней среды. Анализ раздражении состоит в различении, разделении сигналов, дифференцировании воздействий на организм. Синтез раздражений проявляется в связывании, обобщении, объединении возбуждений, возникающих в различных участках мозговой коры вследствие взаимодействия, устанавливающегося между нейронами и их группами. Процессы анализа и синтеза связаны между собой и протекают параллельно, составляя главную функцию головного мозга. Пример аналитико-синтетической деятельности коры головного мозга – образование стереотипа динамического, при котором происходит объединение в функциональную систему несколько временных связей. Кора фиксирует определённый порядок раздражителей и соответствующих им реакций, что облегчает её работу при выполнении стереотипно повторяющейся системы рефлексов. Механизм образования условных рефлексов основан на процессе замыкания нервной связи между 2 одновременно возбуждёнными пунктами головного мозга. Детальный анализ нервного механизма условнорефлекторной связи с применением тонких современных методик электроэнцефалографии, вызванных потенциалов, изучение нейронной активности подтвердили вывод Павлова о корковом механизме замыкания условных рефлексов. По гипотезе П. К. Анохина, при действии условного и безусловного раздражителей происходит генерализованная активация коры с последующей конвергенцией восходящих возбуждений на одних и тех же нейронах. В результате взаимодействия на клеточном уровне наличных и следовых процессов возбуждения возникают и закрепляются временные связи (Временная (условная) связь — это совокупность нейрофизиологических, биохимических и ультраструктурных изменений мозга, возникающих в процессе сочетания условного и безусловного раздражителей и формирующих определенные взаимоотношения между различными мозговыми образованиями. Механизм памяти фиксирует эти взаимоотношения, обеспечивая их удержание и воспроизведение). В основе каждого условного рефлекса лежит особая функциональная организация групп нейронов, способная воспроизводить в ответ на условный сигнал следы предшествующих раздражений. Предполагалось, что возбуждение от одной группы корковых клеток, воспринимающих условный сигнал, передаётся к другой только по горизонтальным нервным волокнам, проходящим в коре. Однако дальнейшие исследования сов. учёных Э. А. Асратяна, И. С. Бериташвили, А. Б. Когана, М. М. Хананашвили, Н. Ю. Беленкова показали, что новая функциональная связь может осуществляться по др. пути: кора – подкорка – кора. Помимо коры, многие подкорковые образования, например ретикулярная формация, гиппокамп, базальные ганглии, гипоталамус, участвуют в формировании условных рефлексов.

  Образование и закрепление Условные рефлексы сопровождается возникновением новой рефлекторной дуги, состоящей из афферентной, центральной и эфферентной частей. Информация о результатах совершенного действия поступает в мозг по механизму обратной связи.

Память — одна из психических функций и видов умственной деятельности, предназначенная сохранять, накапливать и воспроизводить информацию. Способности длительно хранить информацию о событиях внешнего мира и реакциях организма и многократно использовать её в сфере сознания для организации последующей деятельности.

Существуют различные типологии памяти:

  1. по сенсорной модальности — зрительная (визуальная) память, моторная (кинестетическая) память, звуковая (аудиальная) память, вкусовая память, болевая память;

  2. по содержанию — образная память, моторная память, эмоциональная память;

  3. по организации запоминания — эпизодическая память, семантическая память, процедурная память;

  4. по временным характеристикам — долговременная память, кратковременная память, ультракратковременная память;

  5. по физиологическим принципам — определяемая структурой связей нервных клеток (она же долговременная) и определяемая текущим потоком электрической активности нервных путей (она же кратковременная)

  6. по наличию цели — произвольная и непроизвольная;

  7. по наличию средств — опосредованная и неопосредованная;

  8. по уровню развития — моторная, эмоциональная, образная, словесно-логическая

Свойства памяти:

  1. Точность

  2. Объём

  3. Скорость процессов запоминания

  4. Скорость процессов воспроизведения

  5. Скорость процессов забывания

Процессы памяти:

  1. Запоминание — это процесс памяти, посредством которого происходит запечатление следов, ввод новых элементов ощущений, восприятие, мышления или переживания в систему ассоциативных связей. Основу запоминания составляет связь материала со смыслом в одно целое. Установление смысловых связей — результат работы мышления над содержанием запоминаемого материала.

  2. Хранение — процесс накопления материала в структуре памяти, включающий его переработку и усвоение. Сохранение опыта дает возможность для обучения человека, развития его перцептивных (внутренних оценок, восприятия мира) процессов, мышления и речи.

  3. Воспроизведение и узнавание — процесс актуализации элементов прошлого опыта (образов, мыслей, чувств, движений). Простой формой воспроизведения является узнавание — опознание воспринимаемого объекта или явления как уже известного по прошлому опыту, установлением сходств между объектом и образом его в памяти. Воспроизведение бывает произвольным и непроизвольным. При непроизвольном образ всплывает в голове без усилий человека.

  4. Забывание — потеря возможности воспроизведения, а иногда даже узнавания ранее запомненного. Наиболее часто забываем то, что незначимо. Забывание может быть частичным (воспроизведение не полностью или с ошибкой) и полным (невозможность воспроизведения и узнавания). Выделяют временное и длительное забывание.

Наиболее распространенной гипотезой о физиологических механизмах, лежащих в основе памяти, была гипотеза Д. О. Хебба (1949) о 2 процессах памяти: кратковременном и долговременном. Предполагалось, что механизмом кратковременной памяти является ревербация электрической импульсной активности в замкнутых цепях нейронов, а долговременное хранение основано на устойчивых морфофункциональных изменениях синаптической проводимости. След памяти переходит из кратковременной формы в долговременную посредством процесса консолидации (закрепления), который развивается при многократном прохождении нервных импульсов через одни и те же синапсы. Т. о., процесс реверберации, продолжающийся не менее нескольких десятков секунд, предполагается необходимым для долгосрочного хранения. Известны гипотезы, допускающие несколько иную временную и функциональную взаимосвязь механизмов кратковременной и долговременной памяти. Проверка этих гипотез базируется на использовании метода экспериментальных амнезий. В качестве амнестических агентов применяются фармакологические препараты, сверхнизкие и сверхвысокие температуры, газовые смеси, гипоксия; наибольшее распространение получило применение электросудорожного шока. Амнестические агенты должны были бы прерывать ревербацию электрической активности, физически разрушая след, и тем самым предотвращать его консолидацию. Действительно, воздействие амнестического агента до или после обучения приводит к нарушению памяти в форме антероградной или ретроградной амнезии. Максимальный интервал времени от момента завершения обучения до применения амнестического агента, еще способного вызвать нарушение памяти, называется амнестическим градиентом. Согласно гипотезе консолидации, за пределами амнестического градиента фиксированный след памяти становится неуязвимым для действия разрушающих стимулов. Однако результаты экспериментов, в которых пытались определить амнестический градиент (для ретроградной амнезии), не позволили найти определенное значение: он оказался величиной, зависящей от множества факторов. Его продолжительность варьировала от долей секунды до нескольких суток. Была также показана возможность получения ретроградной амнезии для старых реактивированных следов памяти, которые, несомненно, давно консолидировались. В настоящее время найдены способы восстановления памяти, подвергшейся действию амнестических агентов. Несмотря на то что окончательная интерпретация полученных результатов еще не найдена, общие представления о П. ф. м. быстро меняются. С развитием микроэлектродной техники появилась возможность изучения электрофизиологических процессов, лежащих в основе памяти на нейронном уровне. Наиболее эффективным оказался метод внутриклеточного отведения электрической активности отдельного нейрона, который позволяет анализировать роль синаптических явлений в пластических преобразованиях нейронной активности. С наибольшей полнотой изучены нейронные механизмы самой простой формы научения - привыкания. Показано, что привыкание связано с изменением эффективности постсинаптических потенциалов. Выделение в дуге безусловного рефлекса сенсорного, моторного и промежуточного компонентов и последовательный анализ их роли в развитии декремента реакции нейрона позволили локализовать привыкание в промежуточном звене - интернейронах. В качестве возможных механизмов этого эффекта рассматриваются пресинаптическое торможение, самогенерируемая депрессия и локализация сформированного во время привыкания следа памяти непосредственно в соме определенных нейронов. В экспериментах, выполненных методом внутриклеточной регистрации в ситуации замыкания условно-рефлекторной связи, обнаружено явление гетеросинаптической фасилитации, которое заключается в улучшении проведения сигналов по определенному синаптическому входу. Этот же метод позволил выявить новый вид электрической активности нейронов - эндогенную пейсмекерную активность. Показано участие пейсмекерных потенциалов в пластических изменениях активности нейронов - привыкании и фасилитации. Эксперименты показывают, что пластичность нейронов основана не только на пластичности синаптических потенциалов. Определенные преобразования появляются и в пейсмекерной активности. Так, повторные инъекции анионов или катионов через электрод, введенный в сому нейрона, приводят к изменениям, полностью аналогичным тем, которые возникают при истинном привыкании. Распространенным при изучении нейронных основ памяти является поиск структур, нейроны которых обнаруживают пластические изменения при научении. Достижением этого направления является неироанатомическая локализация следа памяти поведения пассивного избегания. Показано, что гиппокамп, миндалина (см. Амигдала) и хвостатое ядро содержат нейроны, осуществляющие поведение данного вида. В работах с применением метода экстраклеточной регистрации электрической активности отдельных нейронов показано, что в различных ситуациях обучения пластичность обнаруживают нейроны гиппокампа, ретикулярной формации и двигательной коры.Существуют предположения о роли глиальных элементов в памяти. Р. Галамбос (1961) считает, что долговременная память связана именно с функцией глиальных элементов. В др. работах показано, что глия, а именно олигодендроциты, принимает участие в замыкании условного рефлекса. Тем не менее определенных данных о роли глии в процессах памяти пока не было получено.Г. Хиденом (1964,1967) выдвинута гипотеза о роли РНК в процессах памяти. Предполагается, что память связана с изменением последовательности оснований в молекуле РНК. Показаны качественные и количественные изменения содержания РНК в процессе научения. Определенная роль отводится и белкам, которые синтезируются благодаря РНК. Однако эксперименты, выполненные с применением фармакологических препаратов, влияющих на синтез протеинов, РНК и др., пока не дали к.-л. убедительных подтверждений этих представлений.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]