Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
20 лекция Дифференциальные уравнения I.doc
Скачиваний:
1
Добавлен:
21.09.2019
Размер:
143.36 Кб
Скачать

Лекция 20. Дифференциальные уравнения.

  1. Дифференциальные уравнения. Основные понятия

Дифференциальным уравнением называется урав­нение, содержащее производные неизвестной функ­ции (или нескольких неизвестных функций). Вместо производных могут содержаться дифференциалы.

Если неизвестные функции зависят от одного ар­гумента, то дифференциальное уравнение называется обыкновенным, если от нескольких, то уравнение на­зывается дифференциальным уравнением с частными производными. Будем рассматривать только обык­новенные дифференциальные уравнения.

Общий вид дифференциального уравнения с одной неизвестной функцией таков:

F(х, у, у', у", ..., у(n)) = 0.

Порядком дифференциального уравнения называ­ется порядок наивысшей из производных, входящих в это уравнение.

Функция у=(х) называется решением дифферен­циального уравнения, если последнее обращается в тождество после подстановки у=(х).

Основной задачей теории дифференциальных уравнений является нахождение всех решений данно­го дифференциального уравнения. В простейших слу­чаях эта задача сводится к вычислению интеграла. Поэтому решение дифференциального уравнения на­зывают также его интегралом, а процесс нахождения всех решений интегрированием дифференциально­го уравнения.

Вообще интегралом данного дифференциального уравнения называют всякое уравнение, не содержа­щее производных, из которого данное дифференциаль­ное уравнение вытекает как следствие.

  1. Дифференциальные уравнения первого порядка

Определение 1. Уравнение вида F(x, y, y')=0, где х независимая переменная; у искомая функция; у' ее производная, называется дифференциальным уравнением первого порядка.

Если уравнение можно разрешить относительно у', то оно принимает вид: y' = f(x,y) и называется уравнением первого порядка, разрешенным относи­тельно производной.

Дифференциальное уравнение удобно записать в виде: , являющемся част­ным случаем более общего уравнения (в симметрической форме): P(x,y)dx+Q(x,y)dy =0, где Р(х, у) и Q (х, у) — известные функции.

Уравнение в симмет­ричной форме удобно тем, что переменные х и у в нем равно­правны, т.е. каждую из них можно рассматривать как функцию от другой.

Определение 2. Решением дифференциального уравнения первого порядка называется функция у=(х), которая при подстановке в уравнение обра­щает его в тождество.

График решения дифференциального уравнения называется интегральной кривой.

Ответ на вопрос о том, при каких условиях уравнение имеет решение, дает теорема Коши, которая называется теоремой о суще­ствовании и единственности решения дифференциального уравне­ния и является основной в теории дифференциальных уравнений.

Теорема (теорема Коши). Если функция f (x, у) и ее частная производная f'y (x, у) определены и непрерывны в неко­торой области G плоскости Оху, то какова бы ни была внутренняя точка (х0; у0) области G, в некоторой окрестности этой точки су­ществует единственное решение уравнения y'=f(x, у), удовлетво­ряющее условиям: у=уо при х=х0.

Теорема Коши дает возможность по виду дифференциального уравнения решать вопрос о существовании и единственности его решения. Это особенно важно в тех случаях, когда заранее не­известно, имеет ли данное уравнение решение.

Геометрически теорема утверждает, что через каждую внутрен­нюю точку (x0; у0) области G проходит единственная интегральная кривая. Очевидно, что в области G уравнение имеет бесконеч­ное число различных решений.

Условия, в силу которых функция у=(х) принимает за­данное значение у0 в заданной точке х0, называют начальными усло­виями решения.

Отыскание решения уравнения, удовлетворяющего началь­ным условиям, — одна из важнейших задач теории дифферен­циальных уравнений. Эта задача называется задачей Коши.

С гео­метрической точки зрения решить задачу Коши — значит из мно­жества интегральных кривых выделить ту, которая проходит через заданную точку (х0; у0) плоскости Оху.

Точки плоскости, через которые либо проходит более одной ин­тегральной кривой, либо не проходит ни одной интегральной кри­вой, называются особыми точками данного уравнения.

Определение 3. Общим решением уравнения в некоторой области G плоскости Оху называется функция у=(х, С), завися­щая от х и произвольной постоянной С, если она является решени­ем уравнения при любом значении постоянной С, и если при любых начальных условиях таких, что 0; у0)G, существует единственное значение постоянной С=С0 такое, что функция у=(х, С0) удовлетворяет данным начальным условиям 0, С)=С0.

Определение 4. Частным решением уравнения в области G называется функция у=(х, С0), которая получается из общего решения у=у(х, С) при определенном значении постоянной С=С0.

Геометрически общее решение представляет собой семейство интегральных кривых на плоскости Оху, зависящее от одной произвольной постоянной С, а частное решение — одну интегральную кривую этого семейства, проходящую через заданную точку (х0; у0).

Иногда начальные условия называют условиями Коши, а частным решением называют решение какой-нибудь задачи Коши.

Геометрический смысл уравнения. Пусть дано дифференциаль­ное уравнение первого порядка y'=f(x, у) и пусть функция у=(х) - его решение. График решения представляет собой непрерывную интегральную кривую, через каждую точку которой можно провести касательную. Из уравнения следует, что угловой коэффициент у' касательной к интегральной кривой в каждой ее точке (х; у) равен значению в этой точке правой части уравнения f(x, у). Таким образом, уравнение y' = f(x, у) устанавливает за­висимость между координатами точки (х; у) и угловым коэффициен­том у' касательной к графику интегральной кривой в той же точке. Зная х и у, можно указать направление касательной к этой интег­ральной кривой в точке (х; у). Сопоставим каждой точке (х; у) интегральной кривой направ­ленный отрезок, угловой коэффициент которого равен f(х, у). По­лучим так называемое поле направлений данного уравнения, рас­крывающее геометрический смысл дифференциального уравнения первого порядка.

Итак, с геометрической точки зрения уравнение y'=f(x, у) определяет на плоскости Оху поле направлений, а решение этого уравнения — интегральная кривая, направление касательной к которой в каждой точке совпадает с направлением поля в этой точке.

Построив на плоскости поле направлений данного дифферен­циального уравнения, можно приближенно построить интеграль­ные кривые.