
- •Міністерство освіти та науки України в.В. Литвин, н.Б. Шаховська Проектування інформаційних систем
- •Передмова наукового редактора серії підручників «комп’ютинґ»
- •1.1. Складність програмного забезпечення
- •1.2. Структура складних систем
- •1.2.1. Приклади складних систем
- •1.2.2. П'ять ознак складної системи
- •1.2.3. Організована і неорганізована складність
- •1.3. Методи подолання складності
- •1.3.1. Роль декомпозиції
- •1.3.3. Роль абстракції
- •1.3.4. Роль ієрархії
- •1.4. Про проектування складних систем
- •1.4.1. Інженерна справа як наука і мистецтво
- •1.4.2. Сенс проектування
- •4. Методи подолання складності.
- •2.1. Базові означення
- •2.2. Методи проектування інформаційних систем
- •2.3. Види інформаційних систем
- •2.4. Рівні моделей даних
- •3. Види інформаційних систем.
- •3.1. Методологія процедурно-орієнтованого програмування
- •3.2. Методологія об'єктно-орієнтованого програмування
- •3.3. Методологія об'єктно-орієнтованого аналізу і проектування
- •3.4. Методологія системного аналізу і системного моделювання
- •4.1. Передісторія. Математичні основи
- •4.1.1. Теорія множин
- •4.1.2. Теорія графів
- •4.1.3. Семантичні мережі
- •4.2. Діаграми структурного системного аналізу
- •4.3. Основні етапи розвитку uml
- •3. Семантичні мережі.
- •5.1. Принципи структурного підходу до проектування
- •5.2. Структурний аналіз
- •5.3. Структурне проектування
- •5.4. Методологія структурного аналізу
- •5.5. Інструментальні засоби структурного аналізу та проектування
- •6.1. Основні елементи
- •6.2. Типи зв’язків
- •6.3. Техніка побудови
- •6.4. Діаграма бізнес – функцій
- •6.4.1. Призначення діаграми бізнес-функцій
- •6.4.2. Основні елементи
- •7.1. Призначення діаграм потоків даних та основні елементи
- •7.1.1. Зовнішні сутності
- •7.1.2. Процеси
- •7.1.3. Накопичувачі даних
- •7.1.4. Потоки даних
- •7.2. Методологія побудови dfd.
- •8.1. Діаграма «сутність-зв’язок»
- •8.2. Діаграма атрибутів
- •8.3. Діаграма категоризації
- •8.4. Обмеження діаграм сутність-зв’язок
- •8.5. Методологія idef1
- •9.1. Основні елементи
- •9.2. Типи керуючих потоків
- •9.3. Принципи побудови
- •10.1. Структурні карти Константайна
- •10.2. Структурні карти Джексона
- •11.1. Призначення case-технологій
- •11.2. Інструментальний засіб bPwin
- •11.2.4. Інші діаграми bpWin
- •11.2.5. Моделі as is і to be
- •11.3.1. Основні властивості
- •11.3.2. Стандарт idef1x
- •11.4. Програмний засіб Visio
- •12.1. Системний аналіз області наукових досліджень
- •12.1.1. Аналіз предметної області
- •12.2. Системний аналіз біржі праці
- •12.2.1. Дерево цілей
- •12.2.2. Опис об’єктів предметної області
- •12.2.3. Концептуальна модель
- •14.1. Еволюція об'єктної моделі
- •14.1.1. Основні положення об'єктної моделі
- •14.2. Складові частини об'єктного підходу
- •14.2.1. Парадигми програмування
- •14.2.2. Абстрагування
- •14.2.3. Інкапсуляція
- •14.2.4. Модульність
- •14.2.5. Ієрархія
- •14.2.7. Паралелізм
- •14.2.8. Збереженість
- •14.3. Застосування об'єктної моделі
- •14.3.1. Переваги об'єктної моделі
- •14.3.2. Використання об'єктного підходу
- •14.3.3. Відкриті питання
- •15.1. Природа об'єкта
- •15.1.1. Що є й що не є об'єктом?
- •15.1.2. Стан
- •15.1.3. Поведінка
- •15.1.4. Ідентичність
- •Void drag(DisplayItem I); // Небезпечно
- •15.2. Відношення між об'єктами
- •15.2.1. Типи відношень
- •15.2.2. Зв'язки
- •15.2.3. Агрегація
- •15.3. Природа класів
- •15.3.1. Що таке клас?
- •15.3.2. Інтерфейс і реалізація
- •15.3.3. Життєвий цикл класу
- •15.4. Відношення між класами
- •15.4.1. Типи відношень
- •15.4.2. Асоціація
- •15.4.3. Успадкування
- •15.4.4. Агрегація
- •15.4.5. Використання
- •15.4.6. Інсталювання (Параметризація)
- •15.4.6. Метакласи
- •15.5. Взаємозв'язок класів і об'єктів
- •15.5.1. Відношення між класами й об'єктами
- •15.5.2. Роль класів і об'єктів в аналізі й проектуванні
- •16.1. Важливість правильної класифікації
- •16.1.1. Класифікація й об’єктно-орієнтовне проектування
- •16.1.2. Труднощі класифікації
- •16.2. Ідентифікація класів і об'єктів
- •16.2.1. Класичний і сучасний підходи
- •16.2.2. Об’єктно-орієнтований аналіз
- •16.3. Ключові абстракції й механізми
- •16.3.1. Ключові абстракції
- •16.3.2. Ідентифікація механізмів
- •17.1. Призначення мови uml
- •17.2. Загальна структура мови uml
- •17.3. Пакети в мові uml
- •17.4. Основні пакети мета-моделі мови uml
- •17.5. Специфіка опису мета-моделі мови uml
- •17.6. Особливості зображення діаграм мови uml
- •18.1. Варіант використання
- •18.2. Актори
- •18.3. Інтерфейси
- •18.4. Примітки
- •18.5. Відношення на діаграмі варіантів використання
- •18.5.1. Відношення асоціації
- •13.5.2. Відношення розширення
- •18.5.3. Відношення узагальнення
- •18.5.4. Відношення включення
- •18.6. Приклад побудови діаграми варіантів використання
- •18.7. Рекомендації з розроблення діаграм варіантів використання
- •19.1. Клас
- •19.1.1. Ім'я класу
- •19.1.2. Атрибути класу
- •19.1.3. Операція
- •19.2. Відношення між класами
- •19.2.1. Відношення залежності
- •19.2.2. Відношення асоціації
- •19.2.3. Відношення агрегації
- •19.2.4. Відношення композиції
- •19.2.5. Відношення узагальнення
- •19.3. Інтерфейси
- •19.5. Шаблони або параметризовані класи
- •19.6. Рекомендації з побудови діаграми класів
- •20.1. Автомати
- •20.2. Стан
- •20.2.1. Ім'я стану
- •20.2.2. Список внутрішніх дій
- •20.2.3. Початковий стан
- •20.2.4. Кінцевий стан
- •20.3. Перехід
- •20.3.2. Сторожова умова
- •20.3.3.Вираз дії
- •15.4. Складений стан і підстан
- •20.4.1. Послідовні підстани
- •20.4.2. Паралельні підстани
- •15.5. Історичний стан
- •20.6. Складні переходи
- •15.6.1. Переходи між паралельними станами
- •20.6.2. Переходи між складеними станами
- •20.6.3. Синхронізуючі стани
- •20.7. Рекомендації з побудови діаграм станів
- •21.1. Стан дії
- •21.2. Переходи
- •21.5. Рекомендації до побудови діаграм діяльності
- •22.1.1. Лінія життя об'єкта
- •22.1.2. Фокус керування
- •22.2. Повідомлення
- •22.2.1. Розгалуження потоку керування
- •22.2.2. Стереотипи повідомлень
- •22.2.3. Тимчасові обмеження на діаграмах послідовності
- •22.2.4. Коментарі або примітки
- •22.3. Приклад побудови діаграми послідовності
- •22.4. Рекомендації з побудови діаграм послідовності
- •23.1. Кооперація
- •23.2.1. Мультиоб'єкт
- •23.2.2. Активний об'єкт
- •23.2.3. Складений об'єкт
- •23.3. Зв'язки
- •23.3.1. Стереотипи зв'язків
- •23.4. Повідомлення
- •23.4.1. Формат запису повідомлень
- •23.5. Приклад побудови діаграми кооперації
- •23.6. Рекомендації з побудови діаграм кооперації
- •24.1. Компоненти
- •24.1.1. Ім'я компоненту
- •24.1.2. Види компонент
- •24.2. Інтерфейси
- •24.3. Залежності
- •24.4. Рекомендації з побудови діаграми компонент
- •25.1. Вузол
- •25.2. З'єднання
- •25.3. Рекомендації з побудови діаграми розгортання
- •26.1. Загальна характеристика case-засобу Rational Rose
- •26.2. Особливості робочого інтерфейсу Rational Rose
- •26.1.1. Головне меню програми
- •26.1.2. Стандартна панель інструментів
- •26.1.3. Вікно браузера
- •26.1.4. Спеціальна панель інструментів
- •26.1.5. Вікно діаграми
- •26.1.6. Вікно документації
- •26.1.7. Вікно журналу
- •26.3. Початок роботи над проектом у середовищі Rational Rose
- •26.4. Розроблення діаграми варіантів використання в середовищі Rational Rose
- •26.5. Розроблення діаграми класів у середовищі Rational Rose
- •26.6. Розроблення діаграми станів у середовищі Rational Rose
- •26.7. Розроблення діаграми послідовності в середовищі Rational Rose
- •26.8. Розроблення діаграми кооперації в середовищі Rational Rose
- •26.9. Розроблення діаграми компонентів у середовищі Rational Rose
- •26.10. Розроблення діаграми розгортання в середовищі Rational Rose
22.1.1. Лінія життя об'єкта
Лінія життя об'єкта (object lifeline) зображується пунктирною вертикальною лінією, що асоціюється з єдиним об'єктом на діаграмі послідовності. Лінія життя служить для позначення періоду часу, протягом якого об'єкт існує в системі й, отже, може потенційно брати участь у всіх її взаємодіях. Якщо об'єкт існує в системі постійно, то і його лінії життя повинна тривати на всій площині діаграми послідовності від самої верхньої її частини до самої нижньої (об'єкти 1 і 2 на рис. 22.1).
Окремі об'єкти, виконавши свою роль у системі, можуть бути знищені (зруйновані), щоб звільнити займані ними ресурси. Для таких об'єктів лінія життя обривається в момент його знищення. Для позначення моменту знищення об'єкта в мові UML використається спеціальний символ у формі латинської букви "X" (об'єкт 3 на рис. 22.1). Нижче цього символу пунктирна лінія не зображується, оскільки відповідного об'єкта в системі вже немає, і цей об'єкт повинен бути виключений із всіх наступних взаємодій.
Зовсім не обов'язково створювати всі об'єкти в початковий момент часу. Окремі об'єкти в системі можуть створюватися в міру необхідності, істотно заощаджуючи ресурси системи й підвищуючи її продуктивність. У цьому випадку прямокутник такого об'єкта зображується не у верхній частині діаграми послідовності, а в тій її частині, що відповідає моменту створення об'єкта (об'єкт 6 на рис. 22.2). При цьому прямокутник об'єкта вертикально розташовується в тому місці діаграми, що на осі часу збігається з моментом його виникненням в системі. Об'єкт обов'язково створюється зі своєю лінією життя й, можливо, з фокусом керування.
22.1.2. Фокус керування
У процесі функціонування об'єктно-орієнтованих систем одні об'єкти можуть перебувати в активному стані, безпосередньо виконуючи певні дії або в стані пасивного очікування повідомлень від інших об'єктів. Щоб явно виділити подібну активність об'єктів, у мові UML застосовується спеціальне поняття, що одержало назву фокус керування (focus of control). Фокус керування зображується у формі витягнутого вузького прямокутника (див. об'єкт 1 на рис. 22.1), верхня сторона якого позначає початок отримання фокусу керування об'єкта (початок активності), а її нижня сторона – закінчення фокусу керування (закінчення активності). Цей прямокутник розташовується нижче позначення відповідного об'єкта й може замінювати його лінію життя (об'єкт 4 на рис. 22.2), якщо він є активним на протязі всього свого життя.
Рис. 22.2. Графічне зображення різних варіантів ліній життя й фокусів керування об'єктів
Періоди активності об'єкта можуть чергуватися з періодами його пасивності або очікування. У цьому випадку в такого об'єкта є кілька фокусів керування (об'єкт 5 на рис. 22.2). Важливо розуміти, що одержати фокус керування може тільки існуючий об'єкт, у якого в цей момент є лінія життя. Якщо ж деякий об'єкт був знищений, то знову виникнути в системі він вже не зможе. Замість нього лише може бути створений інший екземпляр цього ж класу, що, строго говорячи, буде іншим об'єктом.
В окремих випадках ініціатором взаємодії в системі може бути актор або зовнішній користувач. У цьому випадку актор зображується на діаграмі послідовності найпершим об'єктом ліворуч зі своїм фокусом керування (рис. 22.3). Найчастіше актор і його фокус керування будуть існувати в системі постійно, відзначаючи характерну для користувача активність в ініціюванні взаємодій із системою. При цьому сам актор може мати власне ім'я або залишатися анонімним.
Іноді деякий об'єкт може ініціювати рекурсивну взаємодію із самим собою. Мова йде про те, що наявність у багатьох мовах програмування спеціальних засобів побудови рекурсивних процедур вимагає візуалізації відповідних понять у формі графічних примітивів. На діаграмі послідовності рекурсія позначається невеликим прямокутником, приєднаним до правої сторони фокуса керування того об'єкта, для якого зображується ця рекурсивна взаємодія (об'єкт 7 на рис. 22.3).
Рис. 22.3. Графічне зображення актора, рекурсії й рефлексивного повідомлення на діаграмі послідовності