
- •Билет №1
- •Вопрос 1: Механическое движение, путь, скорость, ускорение.
- •Равномерное
- •Неравномерное
- •Равнопеременное
- •Вопрос 2: Изменение силы тока, проходящего через резистор, и напряжения на нем, расчет сопротивления проволочного резистора.
- •Вопрос 3: Расчет количества теплоты, которое потребуется для нагревания тела.
- •Билет №2
- •Вопрос 1: Явление инерции. Первый закон Ньютона. Сила и сложение сил. Второй закон Ньютона.
- •Вопрос 2: Измерение силы тока и напряжения на различных участках цепи при последовательном (параллельном) соединении проводников, анализ полученных результатов.
- •Вопрос 3: Задача на расчет влажности воздуха. Билет 3
- •Вопрос 1: Третий закон Ньютона. Импульс. Закон сохранения импульса. Объяснение реактивного движения на основе закона сохранения импульса.
- •Вопрос 2: Измерение силы тока, проходящего через лампочку, и напряжения на ней, расчет мощности электрического тока.
- •Вопрос 3: Задача на составление уравнения ядерной реакции.
- •Билет №4
- •Вопрос 1:Сила тяжести. Свободное падение. Ускорение свободного падения. Закон всемирного тяготения.
- •Вопрос 2: Измерение силы тока, проходящего через резистор и напряжения на нем, построение графика зависимости силы тока от напряжения.
- •Вопрос 3: Задача на определение конечной температуры при смешивании горячей и холодной воды. Билет № 5
- •Вопрос 1 Сила упругости. Объяснение устройства и принципа действия динамометра. Сила трения. Трение в природе и технике.
- •Вопрос 2 Наблюдение магнитного действия постоянного тока. Постановка качественных опытов по исследованию зависимости направления магнитного поля от направления и величины тока.
- •Вопрос 3 Задача на расчет массы тела по его плотности. Билет №6
- •Вопрос 1: Работа силы. Кинетическая и потенциальная энергия. Закон сохранения механической энергии.
- •Вопрос 3: задача на расчет заряда, прошедшего через проводник. Билет №7
- •Вопрос 1: Механические колебания. Механические волны. Звук. Колебания в природе и технике.
- •Вопрос 3: Задача на применение закона Ома для участка цепи. Билет 8
- •Вопрос 1. Модели строения газов, жидкостей, и твердых тел. Тепловое движение атомов и молекул. Броуновское движение и диффузия. Взаимодействие частиц вещества.
- •Доказательство.
- •Вопрос 3. Задачи на применение закона всемирного тяготения. Билет 9.
- •Вопрос 1: Внутренняя энергия. Работа и теплопередача как способы изменения внутренней энергии тела. Закон сохранения энергии в тепловых процессах.
- •Вопрос 2: Исследование условий равновесия рычага под действием груза и пружины динамометра. Построение графика Зависимости показаний динамометра от расстояния груза до оси вращения.
- •Вопрос 3: Задача на расчет сопротивления проводника по его удельному сопротивлению, длине и площади поперечного сечения
- •Билет №10
- •Вопрос 1:Виды теплопередачи: теплопроводность, конвекция, излучение. Примеры теплопередачи в природе и технике.
- •Вопрос 2:Измерение удлинения пружины от веса груза, подвешенного у ней. Построение графика зависимости удлинения пружины от веса груза.
- •Вопрос 3: Задача на расчет общего сопротивления последовательного и параллельного соединения проводников.
- •Билет №11
- •Вопрос 1: Количество теплоты. Удельная теплоемкость. Плавление. Кристаллизация
- •Вопрос 2: Проверка предположения: при увеличении массы груза пружинного маятника в 4 раза период его колебаний увеличится в 2 раза.
- •Вопрос 3: Задача на расчет пути или скорости при равноускоренном движении
- •Билет №12
- •Вопрос 1: Испарение. Конденсация. Кипение. Влажность воздуха.
- •Вопрос 2: Измерение фокусного расстояния и расчет оптической силы собирающей линзы
- •Вопрос 3: Задача на применение закона Гука. Билет №13
- •Вопрос 1: Электризация тел. Два вида электрических зарядов. Взаимодействие зарядов. Закон сохранения электрического заряда.
- •Вопрос 2: Наблюдение явления испарения жидкости. Постановка качественных опытов по исследованию зависимости скорости испарения от площади поверхности жидкости и рода жидкости.
- •Вопрос 3: Задача на применение второго закона Ньютона. №43-58 (№51) Билет №14
- •Вопрос 1: Постоянный электрический ток. Электрическая цепь. Электрическое сопротивление. Закон Ома для участка электрической цепи.
- •Вопрос 2: Измерение веса тела в воздухе и веса тела, полностью погруженного в жидкость, расчет силы Архимеда.
- •Вопрос 3: Задача на расчет центростремительного ускорения при движении тела по окружности с постоянной скоростью. Билет №15
- •Вопрос 1: Работа и мощность электрического тока. Закон Джоуля-Ленца. Использование теплового действия тока в технике.
- •Вопрос 2: Проверка предположения: при увеличении длины нити нитяного маятника в 4 раза период его колебаний увеличится в 2 раза.
- •Вопрос 3: Задача на относительность механического движения.
- •Билет №16
- •Вопрос 1: Электрическое поле. Действие электрического поля на электрические заряды. Силовые линии электрического поля
- •Вопрос 2: Измерение силы упругости и удлинения пружины, расчет жестокости пружины
- •Вопрос 3: Задача на построение изображения в плоскости.
- •Билет №17
- •Вопрос 1: Явление электромагнитной индукции. Индукционный ток. Опыты Фарадея. Переменный ток.
- •Вопрос 2: Измерение разности температур сухого и влажного термометров и определение относительной влажности воздуха.
- •Вопрос 3: Задача на применение соотношения между скоростью распространения, частотой и длиной электромагнитной волны.
- •Билет №18
- •Вопрос 1: Линза. Фокусное расстояние линзы. Построение изображения в собирающей линзе. Глаз как оптическая система.
- •Билет №19
- •Билет №20
Вопрос 2: Измерение веса тела в воздухе и веса тела, полностью погруженного в жидкость, расчет силы Архимеда.
Вопрос 3: Задача на расчет центростремительного ускорения при движении тела по окружности с постоянной скоростью. Билет №15
Вопрос 1: Работа и мощность электрического тока. Закон Джоуля-Ленца. Использование теплового действия тока в технике.
Электрический ток - это направленное движение заряженных частиц. Это движение создается электрическим полем, которое при этом совершает работу.
Работу электрического поля, создающего ток, называют работой тока.
А - работа тока
Эта работа может быть разной на разных участках цепи, но на каждом из них она пропорциональна заряду, проходящему через него. Физическая величина, показывающая, какую работу совершает на данном участке ток при перемещении по этому участку заряда 1 Кл, называется электрическим напряжением на этом участке (U).
U - напряжение
Чтобы найти напряжение U на данном участке цепи, надо работу тока А разделить на заряд q, прошедший по этому участку:
U = A
q
Отсюда следует, что
A = U*q
Подставляя в последнее равенство выражение q=I*t, получаем
A=I*U*t
Итак, чтобы найти работу тока на участке цепи, надо напряжение на концах этого участка U умножить на силу тока I и на время t, в течение которого совершалась работа.
Ед. изм. 1Дж=1В*1А*1с
Действие тока характеризуется не только работой А, но и мощностью P. Мощность тока показывает, какую работу совершает ток за единицу времени.
P=A/t, A=I*U*t => P=IU
Итак, чтобы найти мощность электрического тока Р, надо силу тока I умножить на напряжение U. Ед. изм. 1Вт=1В*1А
Одним из свойств электрического тока является его тепловое действие. Нагревание током проводника обусловлено взаимодействием носителей тока со встречными атомами или ионами вещества. В результате этого взаимодействия внутренняя энергия проводника возрастает и он нагревается. Нагретый проводник отдает полученную энергию окружающей среде в виде тепловой энергии. Эта энергия и представляет собой то количество теплоты, которое определяется по закону Джоуля-Ленца.
Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения по нему тока.
Q=I2Rt
Закон Джоуля-Ленца был открыт экспериментально. Но ему можно дать и теоретическое обоснование.
Когда электрический ток проходит по проводнику, совершается работа, определяемая выражением А=I*U*t, но U=I*R => A=I2*R*t.
Если проводник, по которому идет ток, остается неподвижным и в нем не происходит никаких химических реакций, то вся эта работа идет на увеличение его внутренней энергии. При этом количество теплоты, выделяемое проводником с током, совпадает с работой тока и поэтому определяется тем же выражением.
Используя Закон Ома, можно получить формулу:
Q=I2Rt , I=U/R => Q=U2 *t
R
Тепловое действие тока широко используется в технике. Например, в лампах накаливания, в плавких предохранителях, в нагревательных приборах, в автоматических устройствах ограничения тока.
9 класс стр.48-53