Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
математика ответы.doc
Скачиваний:
31
Добавлен:
20.09.2019
Размер:
639.49 Кб
Скачать
  1. Асимптоты графика функции.

Асимптоты графика функции

Назовём асимптотами прямые линии, к которым неограниченно приближается график функции, когда точка графика неограниченно удаляется от начала координат. В зависимости от поведения аргумента при этом, различаются два вида асимптот: вертикальные и наклонные. Определение 7 . 1 Вертикальной асимптотой графика функции

называется вертикальная прямая

, если

или

при каком -либо из условий

Заметим, что мы при этом не требуем, чтобы точка принадлежала области определения функции

однако она должна быть определена по крайней мере в какой-либо из односторонних окрестностей этой точки:

или

где

  1. Производная функции в точке. Геометрический и физический смысл производной. Непрерывность функций, имеющих производную.

Производная функции одно из основных и основополагающих понятий математического анализа. Также данной понятие употребляется в физике для описания траекторий и скоростей движения тел и других точных науках. Мы рассмотрим основные понятия и теоремы связанные с производной функции, также обсудим геометрический и физический смысл производной функции, приведем перечень правил, которые нужно соблюдать при взятии производной функции одной переменной, сложной функции и обратной функции. Также упомянем легкие построения касательной и нормали к кривой функции, используя производную данной функции.

Физический и геометрический смысл производной:

1) Физический смысл производной.

Если функция y = f(x) и ее аргумент x являются физическими величинами, то производная

  • скорость изменения переменной y относительно переменной x в точке

Например, если S = S(t) – расстояние, проходимое точкой за время t, то ее производная

– скорость в момент времени

Если q = q(t) – количество электричества, протекающее через поперечное сечение проводника в момент времени t, то

– скорость изменения количества электричества в момент времени, т.е. сила тока в момент времени

.

2) Геометрический смысл производной.

Пусть

  • н екоторая кривая,

точка на кривой l

Любая прямая, пересекающая l не менее чем в двух точках называется секущей.

Касательной к кривой l в точке

называется предельное положение секущей

если точка

стремится к

двигаясь по кривой.

Из определения очевидно, что если касательная к кривой в точке

существует, то она единственная.

  1. Дифференциал и его геометрический смысл.

Рассмотрим функцию y = f(x), дифференцируемую в данной точке x. Приращение D y ее представимо в виде

D y = f'(x)D x +a (D x) D x,

где первое слагаемое линейно относительно D x, а второе является в точке D x = 0 бесконечно малой функцией более высокого порядка, чем D x. Если f'(x)№ 0, то первое слагаемое представляет собой главную часть приращения D y. Эта главная часть приращения является линейной функцией аргумента D x и называется дифференциалом функции y = f(x). Если f'(x) = 0, то дифференциал функции по определению считается равным нулю.

Определение 5 (дифференциал). Дифференциалом функции y = f(x) называется главная линейная относительно D x часть приращения D y, равная произведению производной на приращение независимой переменной

dy = f'(x)D x.

Заметим, что дифференциал независимой переменной равен приращению этой переменной dx = D x. Поэтому формулу для дифференциала принято записывать в следующем виде: dy = f'(x)dx.

Выясним каков геометрический смысл дифференциала. Возьмем на графике функции y = f(x) произвольную точку M(x,y) (рис21.). Проведем касательную к кривой y = f(x) в точке M, которая образует угол f с положительным направлением оси OX, то есть f'(x) = tg f. Из прямоугольного треугольника MKN

KN = MNtgf = D xtg f = f'(x)D x,

то есть dy = KN.

Таким образом, дифференциал функции есть приращение ординаты касательной, проведенной к графику функции y = f(x) в данной точке, когда x получает приращение D x.

Отметим основные свойства дифференциала, которые аналогичны свойствам производной.

d c = 0;

d(c u(x)) = c d u(x);

d(u(x) ± v(x)) = d u(x) ± d v(x);

d(u(x) v(x)) = v(x) d u(x) + u(x)d v(x);

d(u(x) / v(x)) = (v(x) d u(x) - u(x) d v(x)) / v2(x).

Укажем еще на одно свойство, которым обладает дифференциал, но не обладает производная. Рассмотрим функцию y = f(u), где u = f (x), то есть рассмотрим сложную функцию y = f(f(x)). Если каждая из функций f и f являются дифференцируемыми, то производная сложной функции согласно теореме (3) равна y' = f'(u)· u'. Тогда дифференциал функции

dy = f'(x)dx = f'(u)u'dx = f'(u)du,

так как u'dx = du. То есть dy = f'(u)du.

Последнее равенство означает, что формула дифференциала не изменяется, если вместо функции от x рассматривать функцию от переменной u. Это свойство дифференциала получило название инвариантности формы первого дифференциала.

Замечание. Отметим, что в формуле (4) dx = D x, а в формуле (5) du яляется лишь линейной частью приращения функции u.

Производные и дифференциалы высших порядков

Предположим, что функция f'(x) является дифференцируемой в некоторой точке x интервала (a,b), то есть имеет в этой точке производную. Тогда данную производную называют второй произвоьдной и обозначают f(2)(x), f''(x) или y(2), y''(x). Аналогично можно ввести понятие второй , третьей и т. д. производных. По индукции можно ввести понятие n- ой производной: y(n) = (y(n-1))'

Функцию, имеющую на некотором множестве конечную производную порядка n, называют n раз дифференцируемой на этом множестве. Методика нахождения производных высших порядков предполагает умение находить производные первого порядка, о чем говорит формула (6).

Если u(x), v(x) две дифференцируемые функции, то для нахождения производной их произведения справедлива формула Лейбница

(u(x)v(x))(n) = u(n)v+nu(n-1)v'+(n(n-1)/2)u(n-2)v''+...+ uv(n) =

= Sk = 0nCnku(n-k)v(k),

где

Cnk = (n(n-1)(n-2)...(n-k+1))/k!, u(0) = u, v(0) = v.

Данная формула Лейбница особенно эффективна в случае, когда одна из перемножаемых функций имеет конечное число отличных от нуля производных и легко вычислить производные другой функции.

Пример 9. Пусть y = ex(x2-1). Найти y(10). Положим u(x) = ex,

v(x) = (x2-1). Согласно формуле Лейбница

y(10) = (ex)(25)(x2-1)+10(ex)(9)(x2-1)'+(10· 9/2) (ex)(8)(x2-1)'',

так как следующие слагаемые равны нулю. Поэтому

y(10) = ex(x2-1)+10ex2x+(10· 9/2)ex (2) = ex(x2+20x+89)

Рассмотрим выражение для первого дифференциала

dy = f'(x)dx.

Пусть функция, стоящая в правой части, является дифференцируемой функцией в данной точке x. Для этого достаточно, чтобы y = f(x), была дифференцируема два раза в данной точке x, а аргумент либо является независимой переменной, либо представляет собой дважды дифференцируемую функцию.