
- •Кинематика поступательного и вращательного движения
- •Тема: Кинематика поступательного и вращательного движения
- •Тема: Кинематика поступательного и вращательного движения
- •Тема: Кинематика поступательного и вращательного движения
- •Тема: Кинематика поступательного и вращательного движения
- •Тема: Кинематика поступательного и вращательного движения
- •Тема: Элементы специальной теории относительности
- •Тема: Элементы специальной теории относительности
- •Тема: Элементы специальной теории относительности
- •Тема: Элементы специальной теории относительности
- •Тема: Динамика вращательного движения
- •Тема: Динамика вращательного движения
- •Тема: Динамика вращательного движения
- •Тема: Динамика вращательного движения
- •Тема: Динамика вращательного движения
- •Тема: Законы сохранения в механике
- •Тема: Законы сохранения в механике
- •Тема: Законы сохранения в механике
- •Тема: Законы сохранения в механике
- •Тема: Распределения Максвелла и Больцмана
- •Тема: Распределения Максвелла и Больцмана
- •Тема: Распределения Максвелла и Больцмана
- •Тема: Распределения Максвелла и Больцмана
- •Тема: Распределения Максвелла и Больцмана
- •Тема: Средняя энергия молекул
- •Тема: Средняя энергия молекул
- •Тема: Средняя энергия молекул
- •Тема: Средняя энергия молекул
- •Тема: Средняя энергия молекул
- •Тема: Средняя энергия молекул
- •Тема: Первое начало термодинамики. Работа при изопроцессах
- •Тема: Электростатическое поле в вакууме
- •Тема: Электростатическое поле в вакууме
- •Тема: Электростатическое поле в вакууме
- •Тема: Законы постоянного тока
- •Тема: Законы постоянного тока
- •Тема: Законы постоянного тока
- •Тема: Законы постоянного тока
- •Тема: Магнитостатика
- •Тема: Явление электромагнитной индукции
- •Тема: Магнитостатика
- •Тема: Магнитостатика
- •Тема: Явление электромагнитной индукции
- •Тема: Явление электромагнитной индукции
- •Тема: Уравнения Максвелла
- •Тема: Уравнения Максвелла
- •Тема: Уравнения Максвелла
- •Тема: Сложение гармонических колебаний
- •Тема: Сложение гармонических колебаний
- •Тема: Сложение гармонических колебаний
- •Тема: Свободные и вынужденные колебания
- •Тема: Волны. Уравнение волны
- •Тема: Волны. Уравнение волны
- •Тема: Энергия волны. Перенос энергии волной
- •Тема: Интерференция и дифракция света
- •Тема: Интерференция и дифракция света
- •Тема: Интерференция и дифракция света
- •Тема: Поляризация и дисперсия света
- •Тепловое излучение. Фотоэффект
- •Тема: Тепловое излучение. Фотоэффект
- •Тема: Эффект Комптона. Световое давление
- •Тема: Тепловое излучение. Фотоэффект
- •Тема: Эффект Комптона. Световое давление
- •Тема: Эффект Комптона. Световое давление
- •Тема: Тепловое излучение. Фотоэффект
- •Тема: Спектр атома водорода. Правило отбора
- •Тема: Дуализм свойств микрочастиц. Соотношение неопределенностей Гейзенберга
- •Тема: Дуализм свойств микрочастиц. Соотношение неопределенностей Гейзенберга
- •Тема: Дуализм свойств микрочастиц. Соотношение неопределенностей Гейзенберга
- •Тема: Дуализм свойств микрочастиц. Соотношение неопределенностей Гейзенберга
- •Тема: Уравнения Шредингера (общие свойства)
- •Тема: Уравнение Шредингера (конкретные ситуации)
- •Тема: Уравнения Шредингера (общие свойства)
- •Тема: Уравнение Шредингера (конкретные ситуации)
- •Тема: Уравнения Шредингера (общие свойства)
- •Тема: Уравнение Шредингера (конкретные ситуации)
- •Тема: Уравнение Шредингера (конкретные ситуации)
- •Тема: Уравнения Шредингера (общие свойства)
Тема: Средняя энергия молекул
При
комнатной температуре коэффициент
Пуассона
,
где
и
–
молярные теплоемкости при
постоянном давлении и постоянном объеме
соответственно, равен
для …
|
|
|
водяного пара |
|
|
|
водорода |
|
|
|
азота |
|
|
|
гелия |
Решение:
Из
отношения
.
При комнатной температуре
,
где
и
–
число поступательных и вращательных
степеней свободы. По условию
.
Отсюда
.
Так как для молекул газа
,
то для рассматриваемого газа
,
а три вращательные степени свободы
имеют трехатомные и многоатомные газы
с нелинейными молекулами. Следовательно,
речь идет о водяном паре.
Тема: Средняя энергия молекул
При
комнатной температуре отношение
молярных
теплоемкостей при постоянном давлении
и постоянном объеме равно
для …
|
|
|
кислорода |
|
|
|
водяного пара |
|
|
|
углекислого газа |
|
|
|
гелия |
Решение:
Из
отношения
найдем
,
.
Так как 3 поступательные и 2 вращательные
степени свободы имеют двухатомные газы,
следовательно, это кислород.
Тема: Средняя энергия молекул Газ занимает объем 5 л под давлением 2 МПа. При этом кинетическая энергия поступательного движения всех его молекул равна …
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Решение:
Согласно
уравнению кинетической теории для
давления идеального газа (основному
уравнению МКТ идеальных газов),
произведение давления идеального газа
и его объема равно двум третям энергии
поступательного движения всех его
молекул:
.
Отсюда
.
Тема: Средняя энергия молекул
Средняя
кинетическая энергия молекул газа при
температуре
зависит
от их конфигурации и структуры, что
связано с возможностью различных видов
движения атомов в молекуле и самой
молекулы. При условии, что имеет место
поступательное, вращательное движение
молекулы как целого и колебательное
движение атомов в молекуле, средняя
кинетическая энергия молекулы кислорода
(
)
равна …
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Решение:
Для
статистической системы в состоянии
термодинамического равновесия на каждую
поступательную и вращательную степени
свободы приходится в среднем кинетическая
энергия, равная
,
а на каждую колебательную степень –
Средняя
кинетическая энергия молекулы равна:
.
Здесь
–
сумма числа поступательных, числа
вращательных и удвоенного числа
колебательных степеней свободы молекулы:
,
где
–
число степеней свободы поступательного
движения, равное 3;
–
число степеней свободы вращательного
движения, которое может быть равно 0, 2,
3;
–
число степеней свободы колебательного
движения, минимальное количество которых
равно 1.
Для молекулярного кислорода
(двухатомной молекулы)
,
и
.
Следовательно,
.
Тогда средняя энергия молекулы кислорода
(
)
равна:
.