- •Основы проектирования приборов и систем
- •Введение. Термины и определения.
- •Математические модели и их классификация
- •Структурная организация приборов и систем. Цифровые преобразователи и приборы
- •Структуры и алгоритмы функционирования измерительных систем
- •Многоточечные измерительные системы.
- •Мультиплицированные измерительные системы.
- •Сканирующие измерительные системы.
- •Системы автоматического контроля
- •Датчики физических величин Датчик как цепь измерительных преобразователей
- •Фотоэлектрические преобразователи
- •Емкостные преобразователи
- •Индуктивные преобразователи
- •Магнитоупругие преобразователи
- •Функции преобразования электрических измерительных цепей датчиков
- •Делитель напряжения с одним рабочим плечом
- •Делитель напряжения с двумя рабочими плечами
- •Мостовая цепь с одним рабочим плечом
- •Мостовая цепь с четырьмя рабочими плечами
- •Нормирующие преобразователи
- •Измерительные преобразователи компенсационного типа
- •Масштабирующие преобразователи тока и напряжения на операционных усилителях
- •Измерительные преобразователи переменного тока
- •Типовые схемы построения измерительных преобразователей на основе операционных усилителей.
- •Накопители информации
- •Накопители на гибких дисках
- •Накопители на жестких магнитных дисках
- •Накопители на компакт-дисках
- •Приводы сd-rом
- •Накопители на магнитной ленте
- •Показатели качества приборов и систем
- •Системный подход, как основа проектирования
- •Принцип агрегатирования при проектировании приборов и систем
- •Выбор интерфейсов измерительных систем
- •Канал общего пользования (интерфейс приборный)
- •Проектирование программного обеспечения измерительных систем
- •Нормируемые метрологические характеристики приборов и систем
- •Сертификация приборов и систем
- •Методы повышения точности
- •Требования предъявляемые к устройствам отображения и регистрации информации
Измерительные преобразователи переменного тока
Широкое применение в цифровых измерительных приборах нашли методы измерения переменного тока и напряжения, основанные на линейном преобразовании среднего значения измеряемого сигнала в напряжение постоянного тока. Наиболее просто такое преобразование осуществляется с помощью пассивного диодного выпрямителя. Однако такие преобразователи имеют целый ряд недостатков – малый динамический диапазон входных напряжений, в пределах которого сохраняется линейность преобразования и его стабильность.
Большими возможностями обладают активные преобразователи средневыпрямленных значений. Схема преобразователя среднего значения напряжения содержит масштабирующий преобразователь 1, выпрямитель 2, сглаживающий фильтр 3 и согласующий усилитель 4.
Масштабирующий преобразователь представляет собой частотно компенсированный делитель напряжения, состоящий из резисторов R1 и R2 и конденсаторов C1 - C6. В цепь отрицательной обратной связи включены диоды VD1 и VD2.
Сглаживающий фильтр устраняет пульсации выходного напряжения. Стремление сократить габаритные размеры сглаживающего фильтра заставили применять резисторы с достаточно большими номиналами, поэтому для согласования большого выходного сопротивления применяют согласующий усилитель А2:
.
где Kф – коэффициент формы кривой измеряемого сигнала; Uном – номинальное значение входного напряжения; Δ – коэффициент, определяющий отличие реальной функции преобразования от идеальной линейной зависимости; Δград – коэффициент, определяющий отличие реальной функции преобразования от идеальной в градуировочной точке; Rн’ – значение сопротивления в цепи диода VD2.
В свою очередь:
,
где Rпр1, Rпр2 – прямые сопротивления диодов; Rобр1, Rобр2 – обратные сопротивления диодов; Rн’’ – сопротивление в цепи диода VD1.
Для увеличения входного сопротивления прибора обязательно уменьшение эквивалентной емкости Cэкв1, состоящей из конденсаторов С1, С3 – С5, шунтирующей резистор R1. Однако уменьшение этой емкости до значений, сравнимых со значениями паразитных емкостей элементов относительно общей шины, может привести к закарачиваниям при регулировке делителя. На практике обычно применяются емкости от 10 до 12 нФ при использовании в делителе проволочных резисторов. Применение последовательной цепи C3, C4, C5, обеспечивает требуемую электрическую прочность изоляции делителя.
В цифровых приборах, измеряющих пиковые значения, используются преобразователи амплитудных значений, в которых применяются методы линеаризации передаточных характеристик пикового детектора путем включения его в цепь ООС усилителя. Включение диодно – емкостной ячейки в замкнутый контур с большим усилением дает эффект, эквивалентный деформации ВАХ диода, что позволяет повысить точность преобразования, особенно в области малых значений измеряемого сигнала.
Для хранения информации на конденсаторе также создают более благоприятные условия, т.к. обратное напряжение на диоде очень мало зависит от измеряемого напряжения.
Находится
в состоянии глубокой перекомпенсации
и его выходное напряжение определяется
в основном свойствами выходного каскада.
Это позволяет выбрать режим, наиболее
благоприятный для подавления различных
паразитных токов, перезаряжающих
запоминающий конденсатор
.
При изменении
входного сигнала в сторону увеличения
диод
открытии напряжение на запоминающемся
конденсаторе
повторяет изменение входного сигнала.
При изменении входного сигнала в сторону уменьшения диод закрывается, что обеспечивает запоминание максимального значения числа до момента появления на входе большого сигнала или до сброса в нулевое состояние ключом S.
Схема амплитудного детектора.
Для оценки погрешности амплитудного детектора можно записать уравнение:
,
где
-
напряжение ошибки;
;
К- коэффициент усиления усилителя
.
,
где
-
коэффициент передачи связи цепи обратной
связи.
Таким образом,
погрешности, связанные с наличием у
диода вольт-амперной характеристики с
малой проводимостью, уменьшаются в
раз. Погрешности амплитудного детектора
определяются током утечки запоминающего
конденсатора, временем переключения
диода
,
утечкой тока через переключатель S
и диод
,
а также разрядом емкости
и входным током усилителя
.
Для нормальной работы детектора
необходима коррекция частотных
характеристик усилителей
и
,
с тем, чтобы усилитель
обладал значительно большим быстродействием,
чем входной усилитель
.
В том случае, если усилитель
обеспечивает более быстрый заряд
конденсатора
Со
, чем может отслеживать усилитель
,
из-за издержек по цепи обратной связи
возможен перезаряд емкости
,
который приводит к значительной
погрешности.
