Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
семинар КСЕ.doc
Скачиваний:
3
Добавлен:
19.09.2019
Размер:
609.79 Кб
Скачать

11. Элементарные частицы

Элементарные частицы – первичные, неразложимые частицы, из которых, как предполагается, состоит вся материя. В современной физике этот термин обычно употребляется не в своем точном значении, а в менее строгом – для наименования большой группы мельчайших частиц материи, удовлетворяющих условию, что они не являются атомами или атомными ядрами, за исключением протона.

К элементарным частицам относятся протоны, нейтроны, электроны, фотоны, пи-мезоны, мюоны, тяжелые лептоны, нейтрино трех типов, странные частицы (К-мезоны, гипероны), разнообразные резонансы, мезоны со скрытым очарованием, «очарованные» частицы, промежуточные векторные бозоны и т. п. – всего их несколько сотен, в основном нестабильных. Их число продолжает расти по мере расширения наших знаний. Большинство перечисленных частиц не удовлетворяет строгому определению элементарности, поскольку являются составными системами.

Массы большинства элементарных частиц имеют порядок массы протона, равной 1,7 · 10 в минус 24 степени г. Микроскопические массы и размеры элементарных частиц обусловливают квантовую специфику их поведения. Наиболее важное квантовое свойство всех элементарных частиц – способность испускаться и поглощаться при взаимодействии с другими частицами.

12. Понятие о кварках

Гипотезу кварков предложил в 1967 г. американский физик-теоретик М. Гелл-Ман (р. 1929). Кварк – частица со спином 1/2 и дробным электрическим зарядом, составной элемент адронов (частиц, наиболее активно участвующих в сильных взаимодействиях). Это название было заимствовано М. Гелл-Маном в одном из фантастических романов и означает нечто пустяковое и странное.

Помимо спина, кварки имеют еще две внутренние степени свободы – «аромат» и «цвет» (степень свободы – независимое возможное изменение состояния физической системы, обусловленное вариациями ее параметров). Каждый кварк может находиться в одном из трех цветовых состояний, которые условно называют красным, синим и желтым (только для удобства – никакого отношения к оптическим свойствам это не имеет). В наблюдаемых адронах кварки скомбинированы таким образом, что возникающие состояния не несут цвета – являются «бесцветными». Ароматов известно пять и предполагается наличие шестого. Свойства кварков разных ароматов различны.

Обычное вещество состоит из легких и- и d-кварков, входящих в состав нуклонов ядер. Более тяжелые кварки создаются искусственно или наблюдаются в космических лучах. Здесь слова «создаются» и «наблюдаются» нельзя понимать буквально – ни один кварк не был зарегистрирован в свободном виде, их можно наблюдать только внутри адронов. При попытке выбить кварк из адрона происходит следующее: вылетающий кварк рождает на своем пути из вакуума пары кварк – антикварк, расположенные в порядке убывания скоростей. Один из медленных кварков занимает место исходного, а тот вместе с остальными рожденными кварками и антикварками образует адроны.

13. Частицы и античастицы

У многих частиц существуют двойники в виде античастиц, с теми же массой, временем жизни, спином, но отличающиеся знаками всех зарядов: электрического, барионного, лептонного и т. д. (электрон–позитрон, протон–антипротон и др). Существование античастиц было впервые предсказано в 1928 г. английским физиком-теоретиком П. Дираком. Из уравнения Дирака для релятивистского движения электрона следовало второе решение для его двойника – позитрона, имеющего туже массу, но положительный электрический заряд. Античастица позитрон была впервые обнаружена в 1932 г. в космических лучах американским физиком К. Андерсоном (р. 1905), лауреатом Нобелевской премии 1936г.

Характерная особенность поведения частиц и античастиц – их аннигиляция при столкновении, т. е. переход в другие частицы с сохранением энергии, импульса, электрического заряда и т. п. Типичный пример – взаимоуничтожение электрона и позитрона с выделением энергии при рождении двух фотонов. В сильных и электромагнитных взаимодействиях имеется полная симметрия между частицами и античастицами – все процессы, протекающие с первыми, возможны и аналогичны для вторых. Подобно протонам и нейтронам, их античастицы могут образовывать антиядра. В принципе, можно представить себе и антиатомы, и даже большие скопления антивещества.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]