- •1. Развитие представлений о строении атомов
- •2. Корпускулярно-волновые свойства микрочастиц
- •3. Квантово-механическое описание процессов в микромире
- •4. Принципы дополнительности и соответствия
- •5. Виды взаимодействий
- •6. Фермионы и бозоны
- •7. Радиоактивность
- •8. Закон радиоактивного распада
- •9. Строение атомного ядра и свойства ядерных сил
- •10. Ядерные процессы
- •11. Элементарные частицы
- •12. Понятие о кварках
- •13. Частицы и античастицы
- •14. Концепция дальнодействия и близкодействия
- •15. Мария Склодовская-Кюри
- •Андронный коллайдер
- •17. Альберт Энштейн
- •Понятие структуры материи
- •3 Структурных уровня организации материи:
- •Развитие знаний о веществе
- •Периодическая система элементов
- •4. Изотопы и новые химические элементы
- •5. Распространённость химических элементов
- •6. Химические связи и многообразие химических систем
- •7. Строение кристаллических и аморфных тел
- •1. Структура и эволюция Вселенной
- •2. Закон Хаббла и концепция Большого взрыва
- •3. Реликтовое излучение и первичный нуклеосинтез
- •4. Эволюция галактик и звёзд
- •5. Синтез химических элементов в звёздах. Сверхновые, пульсары, квазары и чёрные дыры
- •6. Средства наблюдений объектов Вселенной
- •7. Проблема поиска внеземных цивилизаций
- •8. Солнечная система — часть Вселенной
- •9. Земля — планета Солнечной системы
- •10. Литосферные плиты и земная кора
- •11. Гидросфера и атмосфера
- •Зарождение живой материи
- •2. Строение и разновидности клеток
- •3. Биосинтез белков и роль ферментов
- •4. Носители генетической информации
- •5. Состав и структура молекул днк и рнк
- •6. Геном организма
- •7. Репликация днк, трансляция и транскрипция
- •8. Свойства генетического кода
- •9. Современные представления о зарождении жизни и основные этапы эволюции биосферы
- •1. Три уровня организации материального мира
- •2. Идея эволюции Ламарка и сущность эволюционной теории Дарвина
- •Роль мутаций, естественного отбора и факторов окружающей среды в происхождении и эволюции видов
- •4. Адаптация и взаимозависимость живых организмов
- •5. Популяции и биоценозы
- •6. Генная инженерия. Проблемы клонирования
- •7. Закон дивергенции
- •1. Человек и природа
- •2. Примеры сохранения природных ресурсов
- •3. Обновление энергосистем
- •4. Сохранение тепла и экономия электроэнергии
- •5. Экономия ресурсов в промышленности, строительстве и на транспорте
- •6. Экономичный автомобиль
- •7. Воздействие промышленности и автотранспорта на окружающую среду
- •8. Преобразование транспортных услуг
- •9. Экологические проблемы городов и особенности мегаполисов
- •10. Решение проблем загрязнения и утилизация отходов
- •11. Перспективные материалы, технологии и сохранение биосферы
- •12. Глобализация биосферных процессов
- •1. Космическое и внутрипланетарное воздействие на биосферу
- •2. Глобальные катастрофы и эволюция жизни
- •3. Биосфера и предотвращение экологической катастрофы
- •4. Природные катастрофы и климат
- •5. Парниковый эффект и кислотные осадки
- •6. Сохранение озонового слоя
- •7. Водные ресурсы и проблемы их сохранения
- •8. Потребление электроэнергии и среда нашего обитания
- •9. Радиоактивное воздействие на биосферу
- •10. Естественный радиационный фон
- •11. Воздействие излучений на живые организмы
- •12. Защита от облучения
- •43. Естественно-научные проблемы защиты окружающей среды
- •1. Самоорганизующиеся системы и их свойства
- •2. Механизмы самоорганизации
- •3. Самоорганизация в химических реакциях
- •4. Необходимые условия самоорганизации открытых систем
- •5. Неустойчивость сложных систем
- •6. Пороговый характер самоорганизации. Точка бифуркации
- •7. Синергетика как обобщённая теория поведения систем различной природы
- •8. Самоорганизация в живой природе и человеческом обществе
2. Корпускулярно-волновые свойства микрочастиц
Французский ученый Луи де Бройль (1892–1987) выдвинул в 1923 г. гипотезу об универсальности корпускулярно-волнового дуализма. Он утверждал, что не только фотоны, но и электроны и любые другие частицы материи наряду с корпускулярными обладают волновыми свойствами. Согласно де Бройлю с каждым микрообъектом связываются, с одной стороны, корпускулярные характеристики (энергия и импульс), а с другой, – волновые характеристики – частота и длина волны.
Вскоре гипотеза де Бройля была подтверждена экспериментально американскими физиками К. Дэвиссоном (1881–1958) и Л. Джермером (1896–1971). Всем микрообьектам присущи и корпускулярные, и волновые свойства: для них существуют потенциальные возможности проявить себя в зависимости от внешних условий либо в виде волны, либо в виде частицы.
3. Квантово-механическое описание процессов в микромире
Экспериментальное подтверждение идеи де Бройля об универсальности корпускулярно-волнового дуализма, ограниченность применения классической механики к микрообъектам, диктуемая принципами дополнительности и неопределенности, а также противоречие целого ряда экспериментов применяемым в начале XX в. теориям привели к новому этапу развития физических представлений окружающего мира, и в особенности микромира – созданию квантовой механики, описывающей свойства микрочастиц с учетом их волновых особенностей. Ее создание и развитие охватывают период с 1900 г. (формулировка Планком квантовой гипотезы) до 20-х годов XX в. и связано прежде всего с работами австрийского физика Э. Шредингера, немецкого физика В. Гейзенберга и английского физика П. Дирака.
В это время возникли новые принципиальные проблемы, в частности проблема, связанная с пониманием физической природы волн де Бройля. Необходимость вероятностного подхода к описанию микрочастиц – важная отличительная особенность квантовой теории. Можно ли волны де Бройля истолковывать как волны вероятности, т. е. считать, что вероятность обнаружить микрочастицы в различных точках пространства меняется по волновому закону? Такое толкование волн де Бройля неверно уже хотя бы потому, что тогда вероятность обнаружить частицу в некоторых точках пространства может быть отрицательной, что не имеет смысла. Чтобы устранить эти трудности, немецкий физик М. Борн (1882–1970) в 1926г. предположил, что по волновому закону меняется не сама вероятность, а амплитуда вероятности, названная волновой функцией. Описание состояния микрообъекта с помощью волновой функции имеет статистический, вероятностный характер.
Итак, в квантовой механике состояние микрочастиц описывается принципиально по-новому – с помощью волновой функции, которая является основным носителем информации об их корпускулярных и волновых свойствах.
4. Принципы дополнительности и соответствия
Согласно двойственной корпускулярно-волновой природе частиц вещества, для описания свойств микрочастиц используются либо волновые, либо корпускулярные представления. Приписать им все свойства частиц и все свойства волн нельзя. Возникает необходимость введения некоторых ограничений в применении к объектам микромира понятий классической механики.
В классической механике всякая частица движется по определенной траектории, так что в любой момент времени точно фиксированы ее координата и импульс. Микрочастицы из-за наличия у них волновых свойств существенно отличаются от классических частиц. Одно из основных различий заключается в том, что нельзя говорить о движении микрочастицы по определенной траектории и об одновременных точных значениях ее координаты и импульса.
Немецкий физик В. Гейзенберг, учитывая волновые свойства микрочастиц и связанные с волновыми свойствами ограничения в их поведении, пришел в 1927 г. к выводу: объект микромира невозможно одновременно с любой наперед заданной точностью характеризовать и координатой, и импульсом. Соотношение неопределенностей является, таким образом, квантовым ограничением применимости классической механики к микрообьектам.
Для описания микрообъектов H. Бор сформулировал в 1927 г. принципиальное положение квантовой механики – принцип дополнительности, согласно которому получение экспериментальной информации об одних физических величинах, описывающих микрообъект (элементарную частицу, атом, молекулу), неизбежно связано с потерей информации о некоторых других величинах, дополнительных к первым. Такими взаимно дополнительными величинами можно считать, например, координату частицы и ее скорость (или импульс).
В становлении квантовомеханических представлений важную роль сыграл выдвинутый Н. Бором в 1923 г. принцип соответствия: всякая новая, более общая теория, являющаяся развитием классической, не отвергает ее полностью, а включает в себя классическую теорию, указывая границы ее применения, причем в определенных предельных случаях новая теория переходит в старую.
