Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Сводка шпоры орехов.docx
Скачиваний:
1
Добавлен:
18.09.2019
Размер:
186.21 Кб
Скачать

13. Теория вероятностей. Область применения.

Для решения многих проблем достаточно знания отдельных числовых парметров, характеризующих наиболее существенные черты случайной величины. С помощью таких характеристик во многих случаях удается исследовать поведение случайных величин. Основными числовыми характеристиками случайной величины являются:

  • математическое ожидание;

  • мода;

  • медиана;

  • дисперсия;

  • среднее квадратическое отклонение.

Рассмотрим эти характеристики для дискретной случайной величины.

Математическим ожиданием (ожидаемым значением или средним значением) дискретной случайной величины называют число M(X) = x1p1 + x2p2 + ...+ xnpn – сумму произведений всех ее возможных значений на их вероятности. Математическое ожидание измеряется в тех же единицах, что и сама величина. Если все значения случайной величины равновероятны, то математическое ожидание совпадает со средним арифметическим значением.

Свойства математического ожидания

  • Математическое ожидание постоянной величины равно самой этой величине M(C) = C

  • Постоянный множитель можно выносить за знак математического ожидания M(CX) = CM(X)

  • Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий M(XY) = M(X) . M(Y)

  • Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий M(X + Y) = M(X) + M(Y)

Дисперсия – это среднее арифметическое квадратов разностей между значениями случайной величины и ее средним значением. В наших обозначениях:

Или в общем виде дисперсией дискретной случайной величины называют математическое ожидание квадрата отклонения случайной величины от ее среднего значения.

Свойства дисперсии

1. Дисперсия постоянной величины равна нулю D(C) = 0

2. Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат D(CX) = C2D(X) 3. Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин D(X + Y) = D(X) + D(Y) 4. Дисперсия разности двух независимых величин равна сумме их дисперсий D(XY) = D(X) + D(Y). Среднее квадратическое отклонение. Дисперсия имеет размерность равную квадрату размерности случайной величины. Поэтому в тех случаях, когда желательно, чтобы оценка рассеяния имела размерность случайной величины, вычисляют не дисперсию, а среднее квадратическое отклонение: Среднее квадратическое отклонение равно корню квадратному из дисперсии, поэтому его размерность равна размерности случайной величины. Например, если Х выражается в линейных метрах, то тоже выражается в линейных метрах, а D(X) – в квадратных метрах.

14. Закон больших чисел. Закон больших чисел – это общий принцип в силу которого совместное действие случайных факторов приводит при некоторых весьма общих условиях к результату почти независящему от случая. Сближение частоты наступления случайных событий с его вероятностью при возрастании числа испытаний может служить первым признаком действия этого закона.

Здесь используются следующие формулы:

  1. Бернулли , где Mn/n – частота появления событий в испытаниях объема n, Р – постоянная величина, n→∞, - бесконечно малая величина

  2. Пуассона ,

  3. П. Чебышева , где - любая величина, n→∞, - отклонения

  4. Л. Колмогорова , хn,k – медиана→0

Закон больших чисел в пространствах производственной природы – одна из форм закона больших чисел утверждающая что при определенных условиях с вероятностью 1 происходит неограниченное сближение средней арифметической последовательности случайных величин, арифметической последовательности случайных величин с некоторыми постоянными величинами. Говорят, что эта последовательность удовлетворяет усиленному закону больших чисел, если существует такая последовательность:

15=16. Случайные величины, распределение случайных величин. Вид функций F(x), р(х), или перечисление р(хi) называют законом распределения случайной величины. Хотя можно представить себе бесконечное разнообразие случайных величин, законов распределения гораздо меньше. Во-первых, различные случайные величины могут иметь совершенно одинаковые законы распределения. Например: пусть y принимает всего 2 значения 1 и -1 с вероятностями 0.5; величина z = -y имеет точно такой же закон распределения. Во-вторых, очень часто случайные величины имеют подобные законы распределения, т.е., например, р(х) для них выражается формулами одинакового вида, отличающимися только одной или несколькими постоянными. Эти постоянные называются параметрами распределения. Хотя в принципе возможны самые разные законы распределения, здесь будут рассмотрены несколько наиболее типичных законов. Важно обратить внимание на условия, в которых они возникают, параметры и свойства этих распределений.

  1 .   Равномерное распределение. Так называют распределение случайной величины, которая может принимать любые значения в интервале (a,b), причем вероятность попадания ее в любой отрезок внутри (a,b) пропорциональна длине отрезка и не зависит от его положения, а вероятность значений вне (a,b) равна 0.

Рис 6.1 Функция и плотность равномерного распределения

Параметры распределения: a , b

  2 .   Нормальное распределение. Распределение с плотностью, описываемой формулой   называется нормальным. Параметры распределения: a , σ

Если производится серия независимых испытаний, в каждом из который событие А может появиться с одинаковой вероятностью р, то число появлений события есть случайная величина, распределенная по закону Бернулли, или по биномиальному закону (другое название распределения).

  Здесь n - число испытаний в серии, m - случайная величина (число появлений события А), Рn(m) - вероятность того, что А произойдет именно m раз, q = 1 - р (вероятность того, что А не появится в испытании).

  4 .   Распределение Пуассона. Распределение Пуассона получается как предельный случай распределения Бернулли, если устремить р к нулю, а n к бесконечности, но так, чтобы их произведение оставалось постоянным: nр = а. Формально такой предельный переход приводит к формуле

  Параметр распределения: a

Распределению Пуассона подчиняются очень многие случайные величины, встречающиеся в науке и практической жизни.

17. Оценка математического ожидания и дисперсии случайных величин. Математическим ожиданием (ожидаемым значением или средним значением) дискретной случайной величины называют число M(X) = x1p1 + x2p2 + ...+ xnpn – сумму произведений всех ее возможных значений на их вероятности. Математическое ожидание измеряется в тех же единицах, что и сама величина. Если все значения случайной величины равновероятны, то математическое ожидание совпадает со средним арифметическим значением.

Свойства математического ожидания

  • Математическое ожидание постоянной величины равно самой этой величине M(C) = C

  • Постоянный множитель можно выносить за знак математического ожидания M(CX) = CM(X)

  • Математическое ожидание произведения двух независимых случайных величин равно произведению их математических ожиданий M(XY) = M(X) . M(Y)

  • Математическое ожидание суммы двух случайных величин равно сумме математических ожиданий M(X + Y) = M(X) + M(Y)

Дисперсия – это среднее арифметическое квадратов разностей между значениями случайной величины и ее средним значением. В наших обозначениях:

Или в общем виде дисперсией дискретной случайной величины называют математическое ожидание квадрата отклонения случайной величины от ее среднего значения.

Свойства дисперсии

1. Дисперсия постоянной величины равна нулю D(C) = 0

2. Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат D(CX) = C2D(X) 3. Дисперсия суммы двух независимых случайных величин равна сумме дисперсий этих величин D(X + Y) = D(X) + D(Y) 4. Дисперсия разности двух независимых величин равна сумме их дисперсий D(XY) = D(X) + D(Y). Среднее квадратическое отклонение. Дисперсия имеет размерность равную квадрату размерности случайной величины. Поэтому в тех случаях, когда желательно, чтобы оценка рассеяния имела размерность случайной величины, вычисляют не дисперсию, а среднее квадратическое отклонение: Среднее квадратическое отклонение равно корню квадратному из дисперсии, поэтому его размерность равна размерности случайной величины. Например, если Х выражается в линейных метрах, то тоже выражается в линейных метрах, а D(X) – в квадратных метрах.