Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
3 модуль.docx
Скачиваний:
2
Добавлен:
16.09.2019
Размер:
81.7 Кб
Скачать

4.Перший закон фотоефекту.

Сила фотоструму насичення прямопропорційна падаючому на електрод світловому потоку.

Щоб струм не протікав, потрібно прикласти затримуючу (гальмуючу) напругу, за якою можна визначити кінетичну енергію фотоелектронів.

Змінюючи частоту подаючого світла, Столєтов визначив кінетичну енергію фотоелектронів і встановив другий закон:

Максимальна кінетична енергія фотоелектронів лінійно зростає з частотою світла і не залежить від його інтенсивності.

Найменша частота хвилі, при якій ще можливий фотоефект, наз. червоною межею фотоефекту.

Найбільша довжина хвилі, при якій ще можна спостерігати фотоефект, наз. червоною межею фотоефекту.Третій з-н фотоефекту:

Поріг фотоефекту (червона межа) визначається тільки матеріалом електрода і не залежить від інтенсивності випромінювання.3. Явище фотоефекту і його закони пояснюється квантовою теорією.Енергія кварта, яка починається тілом, йде н роботу щодо виривання електрона (А6) і надання йому кінетичної енергії (Ек)

Е=А6+Ек

h λ=Ав + - р-ня Ейнштейна

Для кожної речовини існує найменша частота λmin, при якій ще можливий фотоефект V=0,

λ min = А – умова фотоефекту.

λ Λmin = - червона межа фотоефекту

h = 0,63 . 10-34 Дж.с. За допомогою рівняння Ейнштейна можна пояснити всі три закони фотоефекту. Справді, інтенсивність монохроматичного випромінювання пропорційна числу фотонів, що падають на поверхню за 1 с: /~ Nф. У свою чергу, від числа фотонів залежить число вибитих із поверхні тіла електронів Ne. Отже, Nе ~ /.

За граничних умов червоної межі фотоефекту кінетична енергія електрона дорівнює нулю. Тому червона межа фотоефекту визначається лише роботою виходу і залежить від хімічної природи металу, наявності домішок і стану його поверхні:

Будова та принцип дії фотоелементів.

Найпростіший сучасний вакуумний фотоелемент є скляним балоном, майже вся внутрішня поверхня якого вкрита світлочутливим шаром металу, який відіграє роль фотокатода. Відкритим залишається невеличке віконце для доступу світла. Анодом є металеве кільце, закріплене в балоні. Фотоелемент умикається в коло батареї.

У разі освітлення катода з нього внаслідок фотоефекту вибиваються електрони і в колі виникає електричний струм. ЕРС батареї вибирається такою, щоб фотострум дорівнював струмові насичення. Залежно від спектрального складу світла, яке треба реєструвати, використовуються фотоелементи, катоди яких виготовлені з різних матеріалів. Наприклад, для реєстрації видимого світла і інфрачервоного випромінювання застосовують елементи з киснево-цезієвим катодом (мала робота виходу); для реєстрації короткохвильової частини видимого світла і ультрафіолетового випромінювання застосовують фотоелементи з стибієво-цезієвим катодом.

Світлові потоки, з якими доводиться мати справу на практиці, невеликі, тому фотоструми у вакуумних елементах дуже малі і не перевищують 10-6 А. Для збільшення сили струму фотоелемент заповнюють аргоном під тиском приблизно 1 Па. Фотострум у такому фотоелементі підсилюється внаслідок іонізації аргону, викликаної зіткненнями електронів з його атомами.

Фотоелементи широко застосовуються для автоматизації виробничих процесів. У поєднанні з електронними підсилювачами фотоелементи входять до складу фотореле — приладів автоматичного управління різними установками, які використовують безінерційність фотоефекту, тобто здатність фотоелемента практично миттєво реагувати на світловий вплив чи на його зміну. Складається фотореле з фотоелемента Ф, підсилювача фотоструму Π і електромагнітного реле ЕР. Якщо на фотоелемент падає світло, в котушці Κ реле виникає струм. Котушка намагнічується і, розтягуючи пружину Пр, притягує якір Я, який замикає контакт В виконавчого кола зі струмом великої потужності.

У разі потреби фотореле можна увімкнути і так, щоб у разі освітлення фотоелемента виконавче коло розмикалося.