
- •Содержание
- •1. Введение.
- •1.1. Назначение релейной защиты.
- •1.2. Основные требования, предъявляемые к релейной защите.
- •Чувствительность
- •1.3. Принципиальные обозначения по госту.
- •1.4. Изображение схем релейной защиты
- •1.5. Маркировка вторичных цепей и аппаратов.
- •2.Короткие замыкания в электрических сетях.
- •2.1.Виды повреждений оборудования
- •2.2. Понятие о симметричных составляющих.
- •2.3. Трехфазные короткие замыкания.
- •2.4.Двухфазное короткое замыкание.
- •2.5.Двухфазное короткое замыкание на землю
- •2.6.Однофазные короткие замыкания
- •2.7.Однофазные замыкания на землю
- •2.8.Короткие замыкания в сетях
- •3. Трансформаторы тока.
- •3.1. Основные сведения о трансформаторах тока.
- •3.2. Устройство и принцип действия.
- •3.3. Изображение векторов вторичных токов.
- •3.4. Условия работы тт в схемах защит.
- •3.4. Схема замещения и векторная диаграмма тт.
- •3.5. Нормальная работа тт.
- •3.6. Работа тт разомкнутой с вторичной обмоткой.
- •3.7. Погрешности тт.
- •Токовая погрешность.
- •Угловая погрешность.
- •Полная погрешность.
- •3.8. Требования к точности тт и их выбор.
- •3.9. Типовые схемы соединений тт.
- •3.10. Схема соединения тт и обмоток реле в полную звезду.
- •3.11. Схема соединения тт и обмоток реле в неполную звезду.
- •3.12. Схема соединения тт в треугольник, а обмоток реле в звезду.
- •3.13. Схема соединений с двумя тт и одним реле,
- •4. Трансформаторы напряжения.
- •4.1.Назначение тн.
- •4.2. Классификация тн.
- •4.3. Маркировка обмоток тн.
- •4.4. Погрешности тн.
- •4.5. Схемы соединений тн.
- •4 .6.Схема соединения обмоток тн в открытый треугольник.
- •4.7.Схема соединения обмоток однофазных тн
- •4.8.Повреждения в цепях тн.
- •5. Оперативный ток.
- •5.1.Назначение оперативного тока.
- •5.2.Постоянный оперативный ток.
- •5.3.Схема управления выключателя.
- •5.4.Оперативный переменный ток.
- •1.Схемы с использованием тт.
- •2.Схемы с использованием тн и тсн.
- •3.Схемы с использованием заряженного конденсатора.
- •4. Схемы с использованием блоков питания.
- •Питание цепей управления выключателей.
- •6. Реле.
- •6.1.Основные положения.
- •6.2.Электромагнитные реле. Принцип действия.
- •6.3. Промежуточные реле.
- •6.3.1. Принцип действия.
- •6.3.2. Методика проверки реле времени.
- •6.3.3. Методика проверки промежуточных и указательных реле.
- •6 .3.4. Поляризованные реле.
- •6.4. Магнитоэлектрические реле.
- •6.8.2. Схемы включения рм.
- •1. Общие сведения.
- •2. Схемы включения реле в защите от междуфазных к.З.
- •6.8.3. Проверка рм защит от междуфазных к.З.
- •1. Проверка цепей напряжения.
- •2 . Анализ правильности включения реле ( по 900 схеме).
- •6.8.4. Проверка рм нулевой последовательности
- •6.8.5. Проверка, регулировка механической части
- •I. Общие положения.
- •II. Проверка и устранение затираний подвижной системы рм.
- •6.8.6. Реле направления мощности типа рм-11, 12.
- •1. Технические данные рм-11-18-1ухл4.
- •2. Устройство.
- •3. Работа.
- •6.9. Реле дифференциальное рнт.
- •6.9.1. Назначение и принцип действия рнт.
- •6.9.2. Устройство реле рнт.
- •6.10. Фильтры обратной последовательности.
- •6.10.1.Принцип действия фильтра по u2.
- •6.10.2.Принцип действия фильтра по i2.
- •7. Защиты линий.
- •7.1.Общие сведения.
- •7.2.Максимальная направленная защита.
- •I. Ток срабатывания пусковых токовых реле мнз.
- •II. Схемы мнз.
- •7.3.Токовая отсечка.
- •I. Токовая отсечка (то) на линиях с односторонним питанием.
- •II. То на лэп с двухсторонним питанием.
- •III. Сочетание то с мтз.
- •7.4.Токовая поперечная дифференциальная
- •7.5.Защита от замыканий на землю в сетях
- •7.6.Дистанционная защита.
- •7.6.1.Общие сведения.
- •7.6.2.Выбор параметров защиты.
- •Первые ступени.
- •Вторые ступени.
- •7.7.Дистанционная защита лэп ( семинар).
- •7.7.1. Принцип действия.
- •7.8. Высокочастотные защиты.
- •7.8.1. Общие сведения.
- •7.8.2. Направленная защита с
- •7.8.3. Дифференциально-фазная защита.
- •7.9. Защита от замыканий на землю в сети
- •8. Защиты трансформаторов.
- •8.1.Общие сведения.
- •8.2.Защита трансформаторов, не имеющих
- •1. Использование защит линии.
- •2. Передача отключающего импульса.
- •3. Установка короткозамыкателя.
- •4. Автоматика отключения отделителя.
- •8.3.Дифференциальная защита.
- •8.3.1. Общие сведения.
- •8.3.2. Схемы и расчет диф.Защиты.
- •1. Расчет токов небаланса в схемах диф.Защиты.
- •2. Дифференциальная отсечка.
- •3. Диф.Защита с рнт-565.
- •4. Диф.Защита с торможением.
- •8.4. Токовая отсечка.
- •8.5. Газовая защита.
- •1. Поплавковые реле.
- •2. Лопастное реле.
- •3. Чашечные реле.
- •8.6. Защита от сверхтоков.
- •8.7. Защита от перегрузки.
- •9. Защиты шин.
- •9.1.Защита сборных шин, ошиновки.
- •1. Дифференциальная защита шин.
- •2. Неполная диф.Защита шин.
- •9.2.Защита шин 6-10кВ.
- •10.Защита двигателей.
- •10.1. Общее.
- •10.2. Защита от м.Ф.К.З.
- •10.3. Защита от 1ф.К.З.
- •10.4. Защита от перегрузки.
- •11. Защита синхронных компенсаторов.
- •12. Зашиты генераторов.
- •12.1. Виды повреждений и ненормальные режимы.
- •12.2. Продольная диф.Защита.
- •12.3. Продольная поперечная защита.
- •12.4. Защита от однофазных замыканий на землю.
- •12.5. Токовые защиты от внешних к.З. И перегрузки.
- •1. Мтз с блокировкой по напряжению.
- •2. Мтз от перегрузки.
- •3. Токовая защита обратной последовательности.
- •12.6. Защита от повышения напряжения.
1.2. Основные требования, предъявляемые к релейной защите.
В общем случае к релейной защите, действующей при повреждениях на отключение, предъявляются следующие четыре основных технических требования:
1. селективность;
2. быстрота отключения;
3. чувствительность;
4. надежность.
Селективность.
Селективностью, или избирательностью, называется действие защиты, обеспечивающее отключение только поврежденного элемента системы посредством его выключателей.
Таким
образом, требование селективности
является основным условием для обеспечения
надежного питания потребителей.
Селективное действие защит при наличии резервного питания потребителей дает возможность исключить перерывы в их электроснабжении.
При отсутствии резервирования даже при селективном действии защит возможна потеря питания.
Т.к. повреждение на ВЛ носят в основном проходящий характер наиболее эффективности в этом случае будет применение АПВ. АПВ обеспечивает 70-90% успешных включений.
Требование селективности не должно исключать возможность действия защит как резервных в случаях отказа защит или выключателей смежных элементов. Пример: отказ защит 8 при к.з.в К3.
Быстродействие
В большинстве случаев к релейной защите, действующей при повреждениях на отключение, предъявляется требование быстродействия.
Это определяется следующими основными соображениями:
1. Ускорение отключения повреждений повышает устойчивость параллельной работы генераторов в системе и дает возможность увеличить пропускную способность ВЛ электропередачи.
При применении быстродействующих реле и выключателей нарушение динамической устойчивости параллельно работающих синхронных машин в следствии короткого замывания может быть исключено. Тем самым устраняется одна из основных причин возникновения наиболее тяжелых, с точки зрения бесперебойной работы потребителей, системных аварий.
2. Ускорение отключения повреждений уменьшает время работы потребителей при пониженном напряжении.
При быстродействующих защитах и выключателях практически все двигатели, установленные как у потребителей, так и на собственных нуждах станций, за исключением тех, которые питаются от отключившегося выключателя, после отключения короткого замыкания могут оставаться в работе. Более того, уменьшение вращающих моментов, например у синхронных двигателей оказывается столь кратковременным, что потребители не ощущают этого.
3. Ускорение отключения повреждений уменьшает размер разрушения поврежденного элемента. Уменьшается время, затрачиваемое на проведение восстановительного ремонта и уменьшается затраты на него.
4. Ускорение отключения повреждений повышает эффективность АПВ поврежденных ЛЭП.
Допустимое время отключения к.з. по условию сохранения устойчивости зависит от ряда факторов. Важнейшим из них является величина остаточного напряжения на шинах электростанций и узловых подстанций энергосистемы. Чем меньше остаточное напряжение, тем хуже условия устойчивости и, следовательно, тем быстрее нужно отключить к.з. Наиболее тяжелыми по условию устойчивости являются трехфазные к.з. и двухфазные к.з. на землю в сети с глухозаземленной нетралью, так как при этих повреждениях происходит наибольшее снижение всех междуфазных напряжений.
В современных энергосистемах для сохранения устойчивости требуется весьма малое время отключения к.з. Так например на электропередачах 330-500кВ необходимо отключить повреждения за 0,1-0,2 сек. после его повреждения, а в сетях 110-220кВ - за 0,15-0,3 сек. В распределительных сетях 6-10кВ короткие замыкания отделенные от источника большими сопротивлениями можно отключить со временем 1,5-3 сек., так как они не влияют на устойчивость системы. Точная оценка допустимого времени отключения производится с помощью специальных расчетов устойчивости проводимых для этой цели.
В качестве приближенного критерия (меры) необходимости применения быстродействующих защит Правила устройства электроустановок (ПУЭ) рекомендуют определить остаточное напряжение на шинах электростанций и узловых подстанций при трехфазном к.з. в интересующей нас точке к.з. Если остаточное напряжение получается меньше 60% номинального, то для сохранения устойчивости следует применять быстрое отключение повреждений, т.е. применять быстродействующую защиту (ПУЭ, п.3.2.108).
Полное время отключения повреждения складывается из времени работы защиты и времени действия выключателя, разрывающего ток к.з. Следовательно, для ускорения отключения нужно ускорить действие, как защиты, так и выключателей. Минимальное времена срабатывания защит равны 0,02-0,04 сек., а выключателей 0,05-0,06 сек. Поэтому минимально допустимые времена отключения к.з. составляет 0,07-0,1 сек. Однако необходимо отметить, что получение малых времен по технико-экономическим соображениям в ряде случаев оказывается нецелесообразным, так как требует применения сложных панелей защит и поэтому менее надежных. Поэтому обычно выставляются те выдержки времени, с которыми по совокупности условий еще допустимо отключать наиболее тяжелые, но реальные повреждения.
В качестве примера цифр могут быть названы следующие минимальные времена отключения к.з.:
1. на электропередачах 400-500кВ – 0,1-0,12 сек.;
2. на линиях 110-330кВ отходящих от современных мощных тепловых станций, с мощными турбогенераторами, имеющими форсированное охлаждение обмоток – 0,15-0,2 сек.;
3. в сетях 110-330кВ с турбогенераторами старой конструкции – 0,2-0,3 сек.
Однако в некоторых случаях простая и экономичная защита не может одновременно удовлетворять требованиям селективности и быстродействия. Тогда необходимо выяснить и сопоставить, не нарушается ли при селективных, но медленных отключеньях повреждений работа потребителей неповрежденной части системы в большей мере, чем при неселективных, но быстрых отключеньях повреждений.
Требование к времени быстродействия защит от ненормальных режимов зависит от их последствий. Часто ненормальные режима носят кратковременный характер и ликвидируются сами, так, например, кратковременна перегрузка при пуске асинхронного двигателя, отключение одного трансформатора на двухтрансформаторной подстанции и работа АВР на СВ-10кВ. В наших случаях быстрое отключение не является необходимым, но может причинить ущерб потребителям. Поэтому отключение оборудования при ненормальном режиме должно производиться только тогда, когда наступает действительно опасность для защищаемого оборудования в большинстве случаев в выдержкой времени.