
- •Содержание
- •1. Введение.
- •1.1. Назначение релейной защиты.
- •1.2. Основные требования, предъявляемые к релейной защите.
- •Чувствительность
- •1.3. Принципиальные обозначения по госту.
- •1.4. Изображение схем релейной защиты
- •1.5. Маркировка вторичных цепей и аппаратов.
- •2.Короткие замыкания в электрических сетях.
- •2.1.Виды повреждений оборудования
- •2.2. Понятие о симметричных составляющих.
- •2.3. Трехфазные короткие замыкания.
- •2.4.Двухфазное короткое замыкание.
- •2.5.Двухфазное короткое замыкание на землю
- •2.6.Однофазные короткие замыкания
- •2.7.Однофазные замыкания на землю
- •2.8.Короткие замыкания в сетях
- •3. Трансформаторы тока.
- •3.1. Основные сведения о трансформаторах тока.
- •3.2. Устройство и принцип действия.
- •3.3. Изображение векторов вторичных токов.
- •3.4. Условия работы тт в схемах защит.
- •3.4. Схема замещения и векторная диаграмма тт.
- •3.5. Нормальная работа тт.
- •3.6. Работа тт разомкнутой с вторичной обмоткой.
- •3.7. Погрешности тт.
- •Токовая погрешность.
- •Угловая погрешность.
- •Полная погрешность.
- •3.8. Требования к точности тт и их выбор.
- •3.9. Типовые схемы соединений тт.
- •3.10. Схема соединения тт и обмоток реле в полную звезду.
- •3.11. Схема соединения тт и обмоток реле в неполную звезду.
- •3.12. Схема соединения тт в треугольник, а обмоток реле в звезду.
- •3.13. Схема соединений с двумя тт и одним реле,
- •4. Трансформаторы напряжения.
- •4.1.Назначение тн.
- •4.2. Классификация тн.
- •4.3. Маркировка обмоток тн.
- •4.4. Погрешности тн.
- •4.5. Схемы соединений тн.
- •4 .6.Схема соединения обмоток тн в открытый треугольник.
- •4.7.Схема соединения обмоток однофазных тн
- •4.8.Повреждения в цепях тн.
- •5. Оперативный ток.
- •5.1.Назначение оперативного тока.
- •5.2.Постоянный оперативный ток.
- •5.3.Схема управления выключателя.
- •5.4.Оперативный переменный ток.
- •1.Схемы с использованием тт.
- •2.Схемы с использованием тн и тсн.
- •3.Схемы с использованием заряженного конденсатора.
- •4. Схемы с использованием блоков питания.
- •Питание цепей управления выключателей.
- •6. Реле.
- •6.1.Основные положения.
- •6.2.Электромагнитные реле. Принцип действия.
- •6.3. Промежуточные реле.
- •6.3.1. Принцип действия.
- •6.3.2. Методика проверки реле времени.
- •6.3.3. Методика проверки промежуточных и указательных реле.
- •6 .3.4. Поляризованные реле.
- •6.4. Магнитоэлектрические реле.
- •6.8.2. Схемы включения рм.
- •1. Общие сведения.
- •2. Схемы включения реле в защите от междуфазных к.З.
- •6.8.3. Проверка рм защит от междуфазных к.З.
- •1. Проверка цепей напряжения.
- •2 . Анализ правильности включения реле ( по 900 схеме).
- •6.8.4. Проверка рм нулевой последовательности
- •6.8.5. Проверка, регулировка механической части
- •I. Общие положения.
- •II. Проверка и устранение затираний подвижной системы рм.
- •6.8.6. Реле направления мощности типа рм-11, 12.
- •1. Технические данные рм-11-18-1ухл4.
- •2. Устройство.
- •3. Работа.
- •6.9. Реле дифференциальное рнт.
- •6.9.1. Назначение и принцип действия рнт.
- •6.9.2. Устройство реле рнт.
- •6.10. Фильтры обратной последовательности.
- •6.10.1.Принцип действия фильтра по u2.
- •6.10.2.Принцип действия фильтра по i2.
- •7. Защиты линий.
- •7.1.Общие сведения.
- •7.2.Максимальная направленная защита.
- •I. Ток срабатывания пусковых токовых реле мнз.
- •II. Схемы мнз.
- •7.3.Токовая отсечка.
- •I. Токовая отсечка (то) на линиях с односторонним питанием.
- •II. То на лэп с двухсторонним питанием.
- •III. Сочетание то с мтз.
- •7.4.Токовая поперечная дифференциальная
- •7.5.Защита от замыканий на землю в сетях
- •7.6.Дистанционная защита.
- •7.6.1.Общие сведения.
- •7.6.2.Выбор параметров защиты.
- •Первые ступени.
- •Вторые ступени.
- •7.7.Дистанционная защита лэп ( семинар).
- •7.7.1. Принцип действия.
- •7.8. Высокочастотные защиты.
- •7.8.1. Общие сведения.
- •7.8.2. Направленная защита с
- •7.8.3. Дифференциально-фазная защита.
- •7.9. Защита от замыканий на землю в сети
- •8. Защиты трансформаторов.
- •8.1.Общие сведения.
- •8.2.Защита трансформаторов, не имеющих
- •1. Использование защит линии.
- •2. Передача отключающего импульса.
- •3. Установка короткозамыкателя.
- •4. Автоматика отключения отделителя.
- •8.3.Дифференциальная защита.
- •8.3.1. Общие сведения.
- •8.3.2. Схемы и расчет диф.Защиты.
- •1. Расчет токов небаланса в схемах диф.Защиты.
- •2. Дифференциальная отсечка.
- •3. Диф.Защита с рнт-565.
- •4. Диф.Защита с торможением.
- •8.4. Токовая отсечка.
- •8.5. Газовая защита.
- •1. Поплавковые реле.
- •2. Лопастное реле.
- •3. Чашечные реле.
- •8.6. Защита от сверхтоков.
- •8.7. Защита от перегрузки.
- •9. Защиты шин.
- •9.1.Защита сборных шин, ошиновки.
- •1. Дифференциальная защита шин.
- •2. Неполная диф.Защита шин.
- •9.2.Защита шин 6-10кВ.
- •10.Защита двигателей.
- •10.1. Общее.
- •10.2. Защита от м.Ф.К.З.
- •10.3. Защита от 1ф.К.З.
- •10.4. Защита от перегрузки.
- •11. Защита синхронных компенсаторов.
- •12. Зашиты генераторов.
- •12.1. Виды повреждений и ненормальные режимы.
- •12.2. Продольная диф.Защита.
- •12.3. Продольная поперечная защита.
- •12.4. Защита от однофазных замыканий на землю.
- •12.5. Токовые защиты от внешних к.З. И перегрузки.
- •1. Мтз с блокировкой по напряжению.
- •2. Мтз от перегрузки.
- •3. Токовая защита обратной последовательности.
- •12.6. Защита от повышения напряжения.
3.5. Нормальная работа тт.
Во
вторичной цепи ТТ циркулирует ток
.
Погрешность ТТ определяется наличием
I’нам. Необходимая точность
ТТ обеспечивается работой его в режиме,
близком к короткому замыканию зажимов
НК вторичной цепи, т.е. с небольшими
значениями сопротивления нагрузки,
вторичного напряжения u2,
индукции Вм в сердечнике, а следовательно,
и малыми значением тока намагничивания
I’нам. При изменении в
известных пределах сопротивления
нагрузки вторичный тока I2
практически не изменяется, т.к. I’нам
остается весьма малым по сравнению с
не изменяющимся I’1.
Поэтому при включении на один ТТ
нескольких реле, их обмотки как правило
соединяются последовательно.
3.6. Работа тт разомкнутой с вторичной обмоткой.
П
ри
размыкании вторичной обмотки весь
первичный ток оказывается намагничивающим.
Индукция резко возрастает, обуславливая
сильный нагрев магнитопровода за счет
повышенных потерь в стали. Индуцируемая
в обмотке ЭДС определяется скоростью
изменения потока во времени, имеющей
наибольшие значения при прохождении
трапециидального ( за счет насыщения
магнитопровода) потока через его нулевые
значения. В указанные моменты ЭДС может
достигнуть весьма больших значений.
Мгновенное значение вторичной ЭДС :
Наибольшее
значение eв имеет
в момент времени, когда произведение
производных
максимально. Поэтому работа ТТ с
разомкнутой вторичной обмотки, как и
правило, является недопустимой уже при
номинальных первичных рабочих токах.
Особенно опасным для изоляции и
обслуживания является момент к.з., когда
мгновенные значения индуцируемых ЭДС
могут достигать многих киловольт.
Необходимо отметить возможность
появления опасных перенапряжений на
зажимах вторичных обмоток ТТ при больших
сопротивлениях нагрузки.
Работа с разомкнутой вторичной обмоткой допускается иногда в релейной защите только для небольших промежуточных насыщающихся ТТ, используемых для питания работающих на переменном токе вспомогательных реле, например реле времени с синхронным двигателями, и катушек отключения выключателя. Это оказывается возможным за счет соответствующего конструктивного выполнения насыщающихся трансформаторов и шунтирования их вторичных обмоток емкостями.
3.7. Погрешности тт.
Под погрешностями ТТ подразумевается отличие вектора вторичного тока I2 от вектора приведенного первичного тока I’1 по величине и углу. Это отличие обусловлено наличием тока намагничивания I’нам создающего магнитный поток Ф в сердечнике ТТ. Из схемы замещения (рис. 3.6) видно, что величина тока намагничивания I’нам, а следовательно, и погрешности ТТ зависят от соотношения сопротивлений ветви намагничивания (Z’нам) и цепи вторичного тока (Z2+Zн). Чем больше ток ответвляется в сопротивление Z’нам, тем больше погрешности ТТ.
Установлены следующие погрешности ТТ:
Токовая погрешность.
Она выражается в процентах и может быть определена по формуле:
Угловая погрешность.
Она
представляет собой угол между вектором
первичного тока I’1 и
вторичного тока I2 ().
Она выражается в градусах, минутах или
сантирадианах и считается положительной,
когда вектор I2 опережает
вектор I’1. Угловая
погрешность может быть определена через
величины угла потерь
(угол между Ф в магнитопроводе и I*нам)
и (угол между U1
и I1) угла между векторами
ЭДС Е2 и вторичного I2.
Величина отрезка (рис.3.7)
.
Угол между I2 и I’нам
равен (900-(+)).
Значение угловой погрешности равно: