
- •1 Блок :
- •Предмет эконометрики. Цели и задачи эконометрики
- •Основные этапы эконометрического моделирования.
- •Статистические данные и способы их представления.
- •Дискретная случайная величина, закон и функция распределения
- •2. Числовые характеристики дискретных случайных величин
- •Дискретная случайная величина, распределенная по закону Пуассона. Числовые характеристики.
- •7 Вопрос Непрерывные случайные величины и их числовые характеристики.
- •8 Вопрос. Нормальное распределение случайной величины. Числовые характеристики
- •10.Вероятность попадания нормального распределения случайной величины на отрезок. Правило трех сигм.
- •11.Типовые законы распределения случайной величины
- •12 ) Генеральная совокупность и выборка из нее
- •14 ) Доверительный интервал для генеральной средней m
- •15 ) Доверительный интервал для генеральной средней а (генеральная дисперсия s2 неизвестна)
- •2 Блок :
- •Доверительный интервал для генеральной доли (относительной величины) р
- •Функция распределения, плотность распределения и их свойства.
- •Определение
- •Плотность распределения
- •Общий подход к решению задачи проверки гипотез.
- •Нулевая гипотеза (нуль-гипотеза) и альтернатива (альтернативная гипотеза)
- •6.2.2. Ошибки при проверке гипотез
- •6.2.3. Критерии значимости
- •Общая схема проверки гипотез
- •Замечание 1
- •6.2.4. Односторонние и двусторонние критерии
- •5) Модель парной линейной регрессии (плр).
- •6)Оценка коэффициентов парной линейной регрессии методом наименьших квадратов
- •7)Дисперсия наблюдаемых значения, расчетных значения, остатков (для парной линейной регрессии). Коэффициент детерминации.
- •8)Проверка статистической значимости коэффициентов парной линейной регрессии.
- •10 )Множественная линейная регрессия
- •11)Метод наименьших квадратов для нахождения параметров множественной линейной регрессии.
- •12)Проверка значимости коэффициентов множественной линейной регрессии
- •13)Классическая модель множественной линейной регрессий
- •14)Прогнозирование значений зависимой переменной для парной линейной регрессии.
- •15)Нелинейные модели , приводимые в линейному иду
Функция распределения, плотность распределения и их свойства.
Фу́нкция распределе́ния в теории вероятностей — функция, характеризующая распределение случайной величины или случайного вектора. При соблюдении известных условий (см. ниже) полностью определяет случайную величину.
Определение
Пусть
дано вероятностное
пространство
,
и на нём определена случайная
величина
с
распределением
.
Тогда функцией распределения случайной
величины
называется функция
,
задаваемая формулой:
.
Т.е.
функцией распределения (вероятностей)
случайной величины X называют функцию
F(x), значение которой в точке x равно
вероятности события
,
т.е. события, состоящего только из тех
элементарных исходов, для которых
.
Свойства
непрерывна справа:[1]
не убывает на всей числовой прямой.
.
.
Распределение случайной величины однозначно определяет функцию распределения.
Верно и обратное: если функция
удовлетворяет четырём перечисленным выше свойствам, то существует вероятностное пространство и определённая на нём случайная величина, такая что является её функцией распределения.
По определению непрерывности справа, функция имеет правый предел
в любой точке
, и он совпадает со значением функции
в этой точке.
В силу неубывания, функция также имеет и левый предел
в любой точке , который может не совпадать со значением функции. Таким образом, функция либо непрерывна в точке, либо имеет в ней разрыв первого рода.
Тождества
Из
свойств вероятности следует,
что
,
таких что
:
;
;
;
;
;
;
;
.
Дискретные распределения
Если случайная величина дискретна, то есть её распределение однозначно задаётся функцией вероятности
,
то функция распределения этой случайной величины кусочно-постоянна и может быть записана как:
.
Эта
функция непрерывна во всех точках
,
таких что
,
и имеет разрыв первого рода в точках
.
Непрерывные распределения
Распределение называется непрерывным, если такова его функция распределения . В этом случае:
,
и
,
а следовательно формулы имеют вид:
,
где
означает
любой интервал, открытый или закрытый,
конечный или бесконечный.
Абсолютно непрерывные распределения
Распределение
называется абсолютно
непрерывным,
если существует неотрицательная почти
всюду (относительно меры
Лебега)
функция
,
такая что:
.
Функция
называется плотностью
распределения.
Известно, что функция абсолютно
непрерывного распределения непрерывна,
и, более того, если
,
то
,
и
.
Вариации и обобщения
Иногда в российской литературе берётся такое определение функции распределения:
.
Определённая так функция распределения будет непрерывна слева, а не справа.
Многомерные функции распределения
Пусть
фиксированное
вероятностное пространство, и
—
случайный вектор. Тогда распределение
,
называемоераспределением
случайного вектора
или совместным
распределением случайных величин
,
является вероятностной мерой на
.
Функция этого распределения
задаётся
по определению следующим образом:
,где
в
данном случае обозначает декартово
произведение множеств.
Свойства
многомерных функций распределения
аналогичны одномерному случаю. Также
сохраняется взаимно-однозначное
соответствие между распределениями
на
и
многомерными функциями распределения.
Однако, формулы для вычисления вероятностей
существенно усложняются, и потому
функции распределения редко используются
для
.