
- •Матриця. Розмірність матриці. Різновиди матриць. Встановити розмірність наступних матриць:
- •2.Які елементи утворюють головну та побічну діагональ матриці? Для наступних матриць визначити елементи:
- •3. Як помножити матрицю на дійсне число? додавання матриць.
- •4.Які матриці можна множити? Як знайти добуток матриць? Чи має добуток матриць властивість комунікативності?
- •5. Протилежна, транспонована та вироджена матриці.
- •6.Які матриці мають визначник? Правила обчислення визначників другого та третього порядків.
- •7.Мінор та алгебраїчне доповнення елемента матриці.
- •8. Яка матриця має собі обернену? Як знаходять та позначають обернену матрицю до матриці а ?
- •9. Властивості визначників.
- •10.Система лінійних рівнянь та її розв’язок. Означення несумісної, означеної, неозначеної, однорідної систем лінійних рівнянь.
- •11.Формули Крамера.
- •13. Розв’язування систем лінійних рівнянь методом Гауса.
- •14.Означення вектора, абсолютної величини вектора,
- •15. Означення колінеарних векторів. Умова колінеарності векторів.
- •16.Скалярний добуток векторів. Умова перпендикулярності двох векторів. Кут між векторами.
- •18.Умови перпендикулярності і паралельності двох прямих. Як знайти точку перетину двох прямих.
- •19.Загальне рівняння прямої та рівняння прямої у відрізках на осях.
- •20. Канонічне та параметричне рівняння прямої Канонічне рівняння
- •21.Рівнянння прямої з кутовим коефіцієнтом.
- •22. Коло. Канонічне рівняння кола. Діаметр. Хорда.
- •23. Еліпс. Канонічне рівняння еліпса. Побудова еліпса. Ексцентриситет еліпса.
- •Канонічне рівняння Еліпса
- •Побудова Еліпса
- •24.Гіпербола. Канонічне рівняння гіперболи. Побудова гіперболи. Ексцентриситет гіперболи.
- •25.Парабола. Канонічне рівняння параболи. Побудова параболи.
- •26. Векторний добуток двох векторів.
- •27. Мішаний добуток трьох векторів.
- •28.Розклад вектора за базисом.
- •29. Функція. Область визначення та множина значень.
- •32.Екстремум функції. Необхідна умова існування екстремуму. Достатні умови екстремуму.
- •33. Екстремум функції. Дослідження функції на екстремум за допомогою другої похідної.
- •34.Границя функції в точці. Основні теореми про границі. Чудові границі
- •Основні теореми про границі функцій
- •Чудові границі
- •35.Точка розриву функції,їх класифікація.
- •36.Похідна геометричний зміст похідної.
- •37.Правила диференціювання.
- •39. Періодичність функцій. Асимптоти графіка функції.
- •42.Застосування диференціалу функції в наближених обчисленнях.
- •45.Екстремум функції двох змінних. Стаціонарні точки.
- •46.Умовний екстремум функції двох змінних.
- •47.Первісна. Невизначений інтеграл.
- •48.Безпосереднє інтегрування.
- •49.Інтегрування частинами.
- •50. Інтегрування Методом підстановки (заміни змінної)
- •52. Визначений інтеграл. Властивості визначеного інтегралу.
- •54.Метод підстановки для визначеного інтегралу.
- •55.Диференціальне рівняння. Порядок диференціального рівняння. Приклади диференціальних рівнянь.
- •56.Види розв’язків диференціального рівняння.
- •57. Початкові умови диференціального рівняння. Задача Коші.
- •58. Диференціальне рівняння з відокремленими змінними, та його загальний розв’язок.
- •59.Однорідні диференціальні рівняння першого порядку, їх загальний розв’язок.
- •Бернуллі метод
20. Канонічне та параметричне рівняння прямої Канонічне рівняння
Якщо
відомі координати точки A(x0,
y0),
що лежить на прямій і напрямного вектора
n
= {l;
m},
то рівняння прямої можна записати в
канонічному вигляді, використовуючи
наступну формулу:
Параметричне
рівняння прямої :
21.Рівнянння прямої з кутовим коефіцієнтом.
Рівняння прямої з кутовим коефіцієнтом. Пряма лінія, що перетинає вісь O y в точці і утворює кут з позитивним напрямом осі O x :
Коефіцієнт k називається кутовим коефіцієнтом прямої. У цьому вигляді неможливо уявити пряму, паралельну осі O y .
22. Коло. Канонічне рівняння кола. Діаметр. Хорда.
Ко́ло — геометричне місце точок площини, відстань від яких до заданої точки, що називається центром кола, є постійною величиною і дорівнює радіусу кола.Коло з центром у точці О і радіусом r позначають О(r).
Коло є простою плоскою кривою другого порядку і класифікується як один із видів конічного перетину. У вужчому сенсі коло — окремий випадком еліпса, тобто еліпс із однаковими півосями, або іншими словами коло є еліпсом із одиничним ексцентриситетом. У геометрії діáметр — це хорда (відрізок, що сполучає дві точки) на колі (сфері, поверхні кулі), що проходить через її центр; така хорда буде найдовшою. Також діаметром називають довжину цього відрізка. За величиною діаметр дорівнює двом радіусам.Діаметр кривої другого порядку — довільна хорда, що проходить крізь її центр. Спряжені діаметри — пара діаметрів, що задовольняють умові: середини хорд паралельних першому діаметру, лежать на другому діаметрі. Перпендикуляр з середини хорди кола проходить через центр цієї окружності.
Радіус, перпендикулярний до хорди, ділить цю хорду навпіл.
Метод безпосереднього інтегрування
Цей метод базується на рівності сталі і застосовується у тих випадках, коли підінтегрільна функція f має вигляд однієї із підінтегральних функцій табличних інтегралів, але її аргумент відрізняється від змінної інтегрування постійном доданком або постійним множником або постійним множником та постійним доданком.
23. Еліпс. Канонічне рівняння еліпса. Побудова еліпса. Ексцентриситет еліпса.
Еліпс - геометричне місце точокM Евклідової площини, для яких сума відстаней до двох даних точок F 1 і F 2 (Званих фокусами) постійна і більше відстані між фокусами, тобто
| F 1 M | + | F 2 M | = 2 a, причому | F 1 F 2 | <2 a. Окружність є окремим випадком еліпса. Поряд з гіперболою і параболою, еліпс є конічним перетином іквадриків. Еліпс також можна описати як перетин площині і кругового циліндра або як ортогональну проекціюкола на площину.
Канонічне рівняння Еліпса
Теорема. В канонической для эллипса системе координат уравнение эллипса имеет вид:
.
Определение. Уравнение (4) называется каноническим уравнением эллипса.
Определение. Канонические для эллипса оси координат называются главными осями эллипса.
Определение. Начало канонической для эллипса системы координатназывается центром эллипса.