- •Глава 1.
- •§ 1.1. Состав систем автоматики
- •§ 1.2. Физические основы работы электромеханических и магнитных элементов
- •§ 1.3. Статические характеристики
- •§ 1.4. Динамические характеристики
- •§ 1.5. Обратная связь в системах автоматики
- •Глава 2
- •§ 2.1. Электрические измерения неэлектрических величин
- •§2.2. Мостовая измерительная схема постоянного тока
- •§ 2.3. Чувствительность мостовой схемы
- •§ 2.4. Мостовая схема переменного тока
- •§ 2.5. Дифференциальные измерительные схемы
- •§ 2.6. Компенсационные измерительные схемы
- •Раздел II
- •Глава 3
- •§ 3.1. Типы электрических датчиков
- •§ 3.2. Контактные датчики с дискретным выходным сигналом
- •Глава 4
- •§ 4.1. Назначение. Принцип действия
- •§ 4.2. Конструкции датчиков
- •Материалы проводов, используемых для потеициометрических датчиков
- •§ 4.3. Характеристики линейного потенциометрического датчика
- •§ 4.4. Реверсивные потенциометрические датчики
- •§ 4.5. Функциональные потенциометрические датчики
- •Глава 5
- •§ 5.1. Назначение. Типы тензодатчиков
- •§ 5.2. Принцип действия проволочных тензодатчиков
- •§ 5.3. Устройство и установка проволочных тензодатчиков
- •§ 5.4. Фольговые, пленочные, угольные и полупроводниковые тензодатчики
- •§ 5.5. Методика расчета мостовой схемы с тензодатчиками
- •Глава 6
- •§ 6.1. Назначение. Типы электромагнитных датчиков
- •§ 6.2. Принцип действия и основы расчета индуктивных датчиков
- •§ 6.3. Дифференциальные (реверсивные) индуктивные датчики
- •§ 6.4. Трансформаторные датчики
- •§ 6.5. Магнитоупругие датчики
- •§ 6.6. Индукционные датчики
- •Глава 7
- •§ 7.1. Принцип действия
- •§ 7.3. Чувствительность пьезодатчика и требования к измерительной цепи
- •Глава 8
- •§ 8.1. Принцип действия. Типы емкостных датчиков
- •§ 8.2. Характеристики и схемы включения емкостных датчиков
- •Глава 9
- •§ 9.1. Назначение. Типы терморезисторов
- •§ 9.2. Металлические терморезисторы
- •§ 9.3. Полупроводниковые терморезисторы
- •§ 9.4. Собственный нагрев термисторов
- •§ 9.5. Применение терморезисторов
- •Глава 10 термоэлектрические датчики
- •§ 10.1. Принцип действия
- •§ 10.2. Материалы, применяемые для термопар
- •§ 10.3. Измерение температуры с помощью термопар
- •Глава 11 струнные датчики
- •§ 11.1. Назначение и принцип действия
- •§ 11.2. Устройство струнных датчиков
- •Глава 12 фотоэлектрические датчики
- •§ 12.1. Назначение.
- •§ 12.2. Приемники излучения фотоэлектрических датчиков
- •§ 12.3. Применение фотоэлектрических датчиков
- •Глава 13
- •§ 13.1. Принцип действия и назначение
- •§ 13.2. Излучатели ультразвуковых колебаний
- •§ 13.3. Применение ультразвуковых датчиков
- •Глава 14
- •§ 14.1. Физические основы эффекта Холла и эффекта магнитосопротивления
- •§ 14.2. Материалы для датчиков Холла и датчиков магнитосопротивления
- •§ 14.3. Применение датчиков Холла и датчиков магнитосопротивления
- •Раздел III
- •Глава 15
- •§ 15.1. Назначение. Основные понятия
- •§ 15.2. Кнопки управления и тумблеры
- •§ 15.3. Пакетные переключатели
- •§ 15.4. Путевые и конечные выключатели
- •Глава 16
- •§ 16.1. Режим работы контактов
- •§ 16.2. Конструктивные типы контактов
- •§ 16.3. Материалы контактов
- •Глава 17
- •§ 17.1. Назначение. Принцип действия
- •§ 17.2. Основные параметры и типы электромагнитных реле
- •§ 17.3. Электромагнитные реле постоянного тока
- •§ 17.4. Последовательность работы электромагнитного реле
- •§ 17.6. Основы расчета магнитопровода электромагнитного реле
- •§ 17.7. Основы расчета обмотки реле
- •§ 17.8. Электромагнитные реле переменного тока
- •§ 17.9. Быстродействие электромагнитных реле
- •Глава 18
- •§ 18.1. Назначение. Принцип действия
- •§ 18.2. Магнитные цепи поляризованных реле
- •§ 18.3. Настройка контактов и устройство поляризованного реле
- •§ 18.4. Вибропреобразователи
- •Глава 19
- •§ 19.1. Типы специальных реле
- •§ 19.2. Магнитоэлектрические реле
- •§ 19.3. Электродинамические реле
- •§ 19.4. Индукционные реле
- •§ 19.5. Реле времени
- •§ 19.6. Электротермические реле
- •§ 19.7. Шаговые искатели и распределители
- •§ 19.8. Магнитоуправляемые контакты. Типы и устройство
- •§ 19.9. Применение магнитоуправляемых контактов
- •Глава 20
- •§ 20.1. Назначение контакторов и магнитных пускателей
- •§ 20.2. Устройство и особенности контакторов
- •§ 20.3. Конструкции контакторов
- •§ 20.4. Магнитные пускатели
- •§ 20.5. Автоматические выключатели
- •Глава 21
- •§ 21.1. Назначение электромагнитных исполнительных устройств
- •§ 21.2. Классификация электромагнитов
- •§ 21.3. Порядок проектного расчета электромагнита
- •§ 21.4. Особенности расчета электромагнитов переменного тока
- •§ 21.5. Электромагнитные муфты
- •Раздел IV
- •Глава 22
- •§ 22.1 Физические основы работы магнитных усилителей
- •§ 22.2. Принцип действия магнитного усилителя
- •§ 22.3. Основные схемы и параметры нереверсивных магнитных усилителей
- •§ 22.4. Основные характеристики магнитных усилителей
- •§ 22.5. Теория идеального магнитного усилителя
- •§ 22.6. Инерционность идеального магнитного усилителя
- •§ 22.7. Графоаналитический способ построения статической характеристики магнитного усилителя
- •Глава 23
- •§ 23.1. Назначение и способы введения обратной связи
- •§ 23.2. Одноактный магнитный усилитель с внешней обратной связью
- •§ 23.4. Регулировка коэффициента обратной связи
- •§ 23.5. Характеристики реального магнитного усилителя с обратной связью
- •§ 23.6. Графическое построение статической характеристики магнитного усилителя с обратной связью
- •§ 23.7. Магнитные усилители с внутренней обратной связью
- •Глава 24
- •§ 24.1. Статическая характеристика реверсивного (двухтактного) магнитного усилителя
- •§ 24.2. Усилители с выходным переменным током
- •§ 24.3. Реверсивные магнитные усилители с выходным постоянным током
- •§ 24.4. Обратная связь в реверсивных магнитных усилителях
- •§ 24.5. Основы расчета магнитных усилителей
- •Глава 25
- •§ 25.1. Многокаскадный магнитный усилитель
- •§ 25.2. Быстродействующие магнитные усилители
- •§ 25.3. Операционные магнитные усилители
- •§ 25.4. Трехфазные магнитные усилители
- •Глава 26
- •§ 26.1. Назначение магнитных модуляторов
- •§ 26.2. Магнитные модуляторы с выходным переменным током основной частоты
- •§ 26.3. Магнитные модуляторы с выходным переменным током удвоенной частоты
- •§ 26.4. Магнитные модуляторы с выходным импульсным сигналом
- •§ 26.5. Магнитомодуляционные датчики магнитных величин
- •§ 26.6. Назначение и принцип действия бесконтактных магнитных реле
- •§ 26.7. Характеристики и схемы бесконтактных магнитных реле
- •§ 26.8. Переходные процессы в бесконтактных магнитных реле
- •§ 26.9. Основы расчета и конструирования бесконтактных магнитных реле
§2.2. Мостовая измерительная схема постоянного тока
Принципиальная схема одинарного моста (рис. 2.2) состоит из четырех резисторов с активными сопротивлениями
, и , которые соединены в замкнутый четырехугольник АБВГ. Входящие в схему резисторы называют плечами
или ветвями моста. Плечи можно обозначать и буквами, например плечо АБ. В четырехугольнике АБВГ можно выделить две диагонали: АВ и БГ. В диагональ БГ моста включен измерительный прибор, имеющий активное сопротивление В диагональ
АБ включен источник питания с ЭДС Е и внутренним сопротивлением Re-
Можно подобрать сопротивления плеч моста так, чтобы потенциалы точек Б и Г, между которыми включен измерительный прибор, были одинаковы. В этом случае ток в цепи прибора отсутствует ( ).
Рис.
2.2. Мостовая измерительная
схема
Процесс подбора таких сопротивлении, обеспечивающих , называется уравновешиванием или балансировкой моста. Условие равновесия моста может быть получено на основании законов Кирхгофа, записанных для токов в плечах моста с учетом принятых на рис. 2.2 направлений токов;
откуда
Поделив (2.3) на (2.4), получим
(2.5)
Так как в уравновешенном мосте ток в цепи прибора , то и равенство (2.5) имеет вид
или
(2.6)
т. е. условие равновесия моста можно сформулировать так: произведения сопротивлений противолежащих плеч должны быть равны.
С помощью мостовой схемы можно измерить неизвестное сопротивление включив его в одно из плеч моста, например в плечо ВГ вместо резистора . При трех известных сопротивлениях , , неизвестное сопротивление . Уравновешивание моста может быть достигнуто изменением либо одного сопротивления ( ), либо отношения двух сопротивлений В уравновешенных мостах измерительный прибор должен быть очень чувствительным, он должен реагировать на малые токи. Именно по показаниям этого прибора и фиксируется равновесие моста. Поэтому в уравновешенных мостах в качестве измерительного прибора используется обычно гальванометр.
Кроме уравновешенных существуют так называемые неуравновешенные (или небалансные) мосты, в которых и измеряемое сопротивление Rx определяется именно по отклонению стрелки прибора, т. е. по величине , поскольку
В качестве измерительного прибора в неуравновешенных мостах используются амперметры (так как токи невелики, то обычно милли- или микроамперметры). Уравновешенные мосты требуют ручной или автоматической балансировки, в то время как неуравновешенные мосты не требуют регулировки при каждом измерении. Поэтому неуравновешенные мосты проще, их чаще используют для электрических измерений неэлектрических величин.
На основании законов Кирхгофа могут быть получены выражения для тока в диагонали моста, содержащей измерительный прибор, через напряжение питания 0:
(2.7)
через ток питания I:
(2.8)
где
(2.9)
(2.10)
Кстати, из (2.7) или (2.8), приравнивая нулю, можно вывести уже полученное нами условие равновесия моста (2.6).
Сложное соединение сопротивлений , в мостовой схеме можно преобразовать в эквивалентное сопротивление — входное сопротивление моста по диагонали питания АВ. Эквивалентная схема моста показана на рис. 2.3. В зависимости от соотношения и различают низкоомные и высокоомные мостовые измерительные схемы.
Если , то мост называется низкоомным. В таких мостах изменение cопротивления плеч почти не влияет на ток питания , т. е. можно считать, что const. При расчете низкоомных мостов обычно используют уравнение (2.8).
Рис 2.3 Эквивалентная схема моста
Если , то мост называется высокоомным. В этом случае постоянной величиной можно считать напряжение на зажимах моста . При расчете высокоомных мостов обычно используют уравнение (2.7).
Разделив (2.7) на (2.8), получим выражение для входного сопротивления моста
(2.11)