
- •Предмет химии. Явления химические и физические.
- •Химический элемент. Простые и сложные вещества. Химические формулы.
- •Валентность. Составление химических формул по валентности.
- •Классификация химических реакций по различным оценкам. Типы химических реакций: соединения, разложения, замещения, обмена. Тепловой эффект химической реакции. Термохимические уравнения.
- •Представление о скорости химических реакций. Зависимость скорости от природы и концентрации реагирующих веществ, температуры. Катализ и катализаторы.
- •Обратимость химических реакций. Химическое равновесие и условия, которые влияют на смещение химического равновесия.
- •Растворы. Растворимость веществ. Зависимость растворимости от их природы, температуры и давления. Массовая доля растворенного вещества в растворе.
- •Оксиды. Классификация оксидов. Способы получения и свойства оксидов. Понятие об амфотерности.
- •Основания. Щелочи и нерастворимые основания. Способы получения и химические свойства.
- •Кислоты. Классификация кислот. Способы получения и общие химические свойства.
- •Соли. Состав солей и их названия. Получение и химические свойства солей. Гидролиз солей.
- •Взаимосвязь между различными классами неорганических соединений.
- •Щелочные металлы, их характеристика на основе размещения в периодической системе и строении атомов. Соединения натрия и калия в природе, их использование. Калийные удобрения.
- •Общая характеристика элементов главной подгруппы второй группы периодической системы. Кальций, его соединения в природе. Жесткость воды и способы ее устранения.
- •Алюминий, характеристика элемента и его соединений на основе размещения в периодической системе и строения атома. Физические и химические свойства алюминия. Амфотерность оксида и гидроксида алюминия.
- •Металлы побочных подгрупп (хром, железо, медь). Физические и химические свойства. Оксиды и гидроксиды. Соли хрома, железа и меди. Роль железа и его сплавов в технике.
- •Кислород, его физические и химические свойства. Аллотропия. Получение кислорода в лаборатории и промышленности. Роль кислорода в природе и использование его в технике.
- •Вода. Электронное и пространственное строение молекулы воды. Физические и химические свойства воды. Вода в промышленности, сельском хозяйстве, быту.
- •Галогенирование:
- •Диеновые углеводороды, их строение, химические свойства и использование. Природный каучук, его строение и свойства. Синтетический каучук.
- •Ацетилен. Строение тройной связи (sp-гибридизация). Получение ацетилена карбидным способом и из метана. Химические свойства (реакции присоединения). Использование ацетилена.
- •Углеводороды в природе: нефть, природный и попутные газы. Переработка нефти: перегонка и крекинг. Использование нефтепродуктов в химической промышленности для получения различных веществ.
- •Альдегиды, их строение, номенклатура, химические свойства (реакции окисления и восстановления). Получение и использование муравьиного и уксусного альдегидов. Фенолформальдегидные смолы.
- •Углеводы, их классификация. Моносахариды. Глюкоза, ее строение, химические свойства (реакция окисления и восстановления). Роль в природе. Сахароза, ее гидролиз
- •Полисахариды как природные полимеры. Крахмал и целлюлоза, их строение, химические свойства. Углеводы как источник сырья для химической промышленности. Искусственные волокна на основе целлюлозы.
Классификация химических реакций по различным оценкам. Типы химических реакций: соединения, разложения, замещения, обмена. Тепловой эффект химической реакции. Термохимические уравнения.
Химическая реакция – процесс, при котором из одних веществ получаются другие. В общем виде уравнение химической реакции можно записать следующим образом:
а1А1 + а2А2 +… → b1В1 + b2В2 +…
Здесь, А1, А2 называются реагентами, В1, В2 – продуктами, а числа а1, а2, b1, b2 – стехиометрическими коэффициентами. Химические реакции классифицируются различными способами. При этом классификации делится на феноменологические, когда за основу берется некий наблюдаемый параметр, и по механизму реакции.
Феноменологические классификации
1.По виду взаимодействия:
а) разложения 2H2O2 → 2H2O + O2
б) соединения H2 + I2 → 2HI
в) замещения Fe + CuCl2 → FeCl2 + Cu
г) обмена Na2SO4 + BaCl2 → 2NaCl + BaSO4
2. По изменению СО участвующих в реакции веществ:
а) ОВР 2HgO → 2Hg + O2
б) без изменения СО HgO + 2HCl → HgCl2 + H2O
3. По полноте протекания процесса:
а) необратимые 2H2О2 →2H2O + O2
б) обратимые 3H2 + N2 == 2NH3
4. По тепловому эффекту:
а) экзотермические P2O3 + 3H2O → 2H3PO4 + Q
б) эндотермические N2 + O2 → 2NO – Q
Окислительно-восстановительные процессы. Степень окисления элемента. Окисление и восстановление как процессы присоединения и отдачи электронов. Практическое использование окислительно-восстановительных процессов.
Все химические реакции можно разделить на 2 группы. К первой из них относятся реакции, протекающие без изменения степени окисления атомов элементов, входящих в состав реагирующих веществ. Ко второй группе относятся реакции, идущие с изменением степени окисления атомов реагирующих веществ. Такие реакции носят название окислительно-восстановительных реакций. ОВР – самые распространенные и играют большую роль в природе и технике. Окислением называется процесс отдачи электронов атомом, молекулой или ионом. При окислении степень окисления повышается. Восстановлением называется процесс присоединения электронов атомом, молекулой или ионом. При восстановлении степень СО понижается. Атомы, молекулы или ионы, отдающие электроны называются восстановителями. Во время реакции они окисляются. Атомы, молекулы или ионы, присоединяющие электроны, называются окислителями. Во время реакции они восстановляются. Восстановители и окислители могут быть как простыми веществами, так и сложными. Металлы содержат на ВЭУ 1 – 2 электрона. Поэтому в химических реакциях оно отдают валентные электроны, т.е. окисляются и проявляют восстановительные свойства. В периодах с повышением порядкового номера восстановительные свойства понижаются, а окислительные – возрастают. У элементов главных подгрупп окислительные свойства ослабевают и усиливаются восстановительные с ростом порядкового номера. Элементы побочных подгрупп имеют металлический характер, поэтому проявляют восстановительные свойства. Неметаллы могут быть как окислителями, так и восстановителями. Важнейшими восстановителями являются: металлы, водород, углерод, оксид углерода (II), сероводород, оксид серы (IV), сернистая кислота и ее соли, галогенводородные кислоты, хлорид олова (II), сульфат железа (II), сульфат марганца (II), сульфат хрома (III), азотистая кислота, аммиак, гидразин, оксид азота (II), фосфористая кислота, альдегиды, спирты, муравьиная и щавелевая кислоты, глюкоза, катод при электролизе. Важнейшие окислители – галогены, перманганат калия, манганат калия, оксид марганца (IV), азотная кислота, кислород, озон, пероксид водорода, концентрированная серная кислота, оксиды меди (II), серебра (I), свинца (IV), хлорид железа (III), гипохлориты, хлораты и перхлораты, «царская водка», анод при электролизе.
ОВР классифицируются по нескольким признакам:
По числу элементов, атомы которых меняют СО:
1 элемент: KClO3 KCl + KClO4
2 элемента: CuS + O2 CuO + SO2
3 элемента: FeS + O2 Fe2O3 + SO2
По принадлежности атомов окислителя и восстановителя одному или нескольким элементам:
в одном веществе: NH4NO3 N2O + H2O
в разных веществах: H2S + HNO3 H2SO4 + NO2 + H2O
По способу изменения СО одного элемента:
1) Диспропорционирования: Эy Эx Эz
KClO3 KCl + KClO4 Cl-1 Cl+5 Cl+7
2) компропорционирования: Эy Эx Эz
NH3 + NO2 N2 + H2O N-3 N0 N+4