Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Электронная техника уч.docx
Скачиваний:
9
Добавлен:
06.09.2019
Размер:
6.96 Mб
Скачать

ЭЛЕКТРОННАЯ ТЕХНИКА

(часть первая)

Электронно-дырочные и металлополупроводниковые переходы Движение электронов в

электрических и магнитных полях

1) Движение электронов в ускоряющем электрическом поле

2) Движение электрона в тормозящем электрическом поле

3) Движение электрона в поперечном электрическом поле

4) Движение электрона в магнитных полях

5) Зонная энергетическая диаграмма

е = 1,6∙10-19 Кл m = 9,1∙10-31 кг

Const

1) Движение электронов в ускоряющем электрическом поле. Рассмотрим однородное электрическое поле с напряжённостью Е=U/d.

U

+

F

d

0

-

-

Рис. 1

На единичный положительный заряд, помещённый в электрическое поле, действует сила, рав- ная по величине напряжённости этого поля.

F = E – для единичного положительного заряда.

F = - e ∙ E – для электрона.

Знак «-» показывает, что сила действующая на электрон, направлена против линии напряжён- ности электрического поля. Под действием данной силы электрон будет двигаться равноуско- ренно и приобретёт максимальную скорость в конце пути. Поле, линии напряжённости кото-

рого направлены навстречу вектору начальной скорости электрона 0, называется ускоряю- щим электрическим полем. Определим максимальную скорость электрона. Работа по переме- щению электрона из одной точки поля в другую равна произведению заряда электрона на раз- ность потенциалов между этими точками.

A = e ∙ U

Данная работа затрачивается на сообщение электрону кинетической энергии.

2

Wк

еm 0 ,

2

где  – конечная скорость электрона. Будем считать, что  = 0

A = Wк,

2

eU m ,

2

2 eU ,

m

так как e и m - константы, то

600

U .

Из последней формулы видно, что скорость электрона в электрическом поле определяется только величиной напряжения между двумя точками поля, и поэтому скорость электрона ино- гда характеризуют этим напряжением.

2) Движение электрона в тормозящем электрическом поле.

U

F +

-

d

0

-

Рис. 2

Под действием силы F электрон будет двигаться равнозамедленно, в какой-то точке поля он остановится и начнёт двигаться в обратном направлении. Электрическое поле, линии напряжённости которого совпадают по направлению с вектором начальной скорости электро- на, называется тормозящим электрическим полем.

3) Движение электрона в поперечном электрическом поле.

Поперечным электрическим полем называется поле, линии напряжённости которого перпен-

дикулярны вектору начальной скорости электрона.

U

+ F

d

0

-

-

Рис. 3

За счёт действия силы F возникает вертикальная составляющая скорости электрона, которая будет всё время увеличиваться. Начальная скорость 0 остаётся постоянной, в результате чего траектория движения электрона будет представлять собой параболу. При вылете электрона за пределы действия поля он будет двигаться по прямой.

4) Движение электрона в магнитных полях.

F = B∙e∙0∙sinα – сила Лоренца. При α = 900 получим sinα = 1.

При α = 900 траектория будет представлять собой дугу окружности.

S

B

-

0

Fл S

B

0

N

-

N

Рис. 4

Рис. 5

Когда α ≠ 900, вектор скорости электрона можно разложить на две составляющие – попереч- ную и продольную относительно направления магнитных силовых линий (рис. 5). Под дей- ствием поперечной составляющей электрон будет двигаться по окружности, а под действием продольной составляющей - двигаться поступательно. В результате траектория будет пред- ставлять собой спираль.

5) Зонная энергетическая диаграмма.

У проводников большое количество свободных электронов, у диэлектриков валентные элек-

троны удерживаются ковалентными связями, у полупроводников структура как у диэлектри- ков, но ковалентные связи значительно слабее. Достаточно сравнительно небольшого количе- ства энергии, получаемой из внешней среды (температура, освещённость, сильное электриче- ское поле) чтобы электроны полупроводника разорвали ковалентные связи и стали свободны- ми.

Диапазон энергий, в котором лежит энергия электрона, удерживаемого ковалентной связью, называется зоной валентности, или валентной зоной.

Диапазон энергий, в котором лежит энергия электрона, разорвавшего ковалентную связь и ставшего свободным, называется зоной проводимости.

Графическое изображение этих энергетических зон называется зонной энергетической диаграммой.

Зона проводимости

 W=Wп-Wв

Запрещённая зона

Зона валентности

W Для полупроводников

Wп

Wв

Рис. 6

Для того, чтобы электрон смог разорвать ковалентную связь и стать свободным, он должен получить энергию, большую ширины запрещённой зоны.

W Для диэлектриков

Зона проводимости

Wп

W Д ля пр о в о дник о в

 W=Wп-Wв W в

Запрещённая зона W п

Wв

Зона валентности

Рис. 7

З о на пр о в о д им о с ти

З о на в а ле нтно с ти

Р ис . 8

Электропроводность полупроводников

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]