Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МСС_консп_лекц.doc
Скачиваний:
19
Добавлен:
05.09.2019
Размер:
4.29 Mб
Скачать

Раздел 8 Измерения электрических величин

8.1 Измерения напряжений (токов).

Для измерения тока и напряжения применяют методы непосредственной оценки и сравнения. В лабораторном практикуме по электротехнике используется в основном метод непосредственной оценки.

Для измерения тока амперметр включают последовательно с нагрузкой R1 (в разрыв ветви) (рис. 8.1).

В связи с тем, что сопротивление амперметра RА отлично от нуля, возникает методическая погрешность измерения, обусловленная включением амперметра:

Обычно RА << R1, поэтому .

Рисунок 8.1–Электрическая схема для измерения постоянного тока

Погрешность измерения тока за счет влияния сопротивления амперметра отрицательна, так как показание прибора несколько меньше того значения тока, которое было бы до момента включения прибора в цепь. Следовательно, максимальная погрешность измерения имеет место, если погрешность, определяемая классом точности прибора, также отрицательна.

Для измерения напряжения вольтметр присоединяют параллельно участку цепи, на котором нужно измерить падение напряжения (рис. 8.2).

Рисунок 9.2–Электрическая схема для измерения постоянного напряжения

Если к источнику ЭДС Е с внутренним сопротивлением Ri подключить резистор R, то в цепи будет протекать ток .

При этом падение напряжения на резисторе составит U = IR. После подключения вольтметра с входным сопротивлением RV сопротивление внешней цепи (относительно источника энергии) уменьшится. В результате ток в неразветвленном участке цепи увеличится:

,

причем I > I'. В результате возрастает падение напряжения на внутреннем сопротивлении источника Ri и соответственно уменьшаются падение напряжения на резисторе R и показания вольтметра UV.

Абсолютная методическая погрешность измерения, возникающая за счет шунтирования резистора R сопротивлением RV , равна

.

Относительная методическая погрешность определяется по формуле

.

Очевидно, что абсолютная и относительная методические погрешности измерения будут стремиться к нулю, если → 0. Поскольку значения Ri и R являются параметрами цепи и остаются неизменными, для уменьшения погрешности входное сопротивление вольтметра должно быть как можно больше (в идеале → ∞). Как указывалось ранее, большим входным сопротивлением обладают электронные вольтметры. Однако и их входное сопротивление Rвх имеет конечное значение, величина которого зависит от предела измерения. Поэтому некоторая малая погрешность δV всегда имеет место.

Исходя из заданной методической погрешности δV , можно определить требуемое значение входного сопротивления вольтметра Rвх из выражения:

.

При измерении напряжения переменного тока эквивалентная схема входного сопротивления вольтметра имеет вид, показанный на рис. 8.3.

Рисунок 8.3–Электрическая схема для измерения переменного напряжения

Комплексное входное сопротивление вольтметра:

.

Модуль входного напряжения:

.

Из приведенных выражений следует, что с увеличением частоты входное сопротивление вольтметра уменьшается из-за снижения емкостного сопротивления. В результате возникает дополнительная методическая частотная погрешность вольтметра. В описании прибора указывается значение Rвх и значение Cвх вольтметра для различных пределов измерения. Обычно Rвх =105…108 Ом, Cвх = 30…70 пФ.

Погрешность измерения за счет шунтирующего действия входной цепи вольтметра можно определить, если измеряемую цепь представить схемой (рис. 8.4), состоящей из эквивалентного генератора с ЭДС холостого хода UX, соответствующего измеряемому напряжению и с внутренним сопротивлением Rэкв, соответствующим эквивалентному сопротивлению в точках подключения вольтметра.

Рисунок 8.4–Расчетная схема

Относительную погрешность измерения (в %) можно определить по формуле

На практике при измерениях на частотах меньше 20 кГц частотной погрешностью вольтметра можно пренебречь.

Основная приведенная погрешность зависит от значения измеряе­мо­го напряжения. Так, при измерении малых (в пределах 100…300 мВ) напряжений она может достигать 10…15 %, а при измерении больших уровней напряжения – уменьшается в 3–4 раза.

На погрешность измерения (на частотах выше 0,1…0,3 МГц) оказывают влияние индуктивность и активное сопротивление соединительных проводов. Поэтому их длины должны быть по возможности меньшими (до 0,5 м).

При измерении напряжений следует обратить особое внимание на выбор предела измерений (так же, как и при измерении тока).

У электронных вольтметров имеется два входных зажима, к которым подключается измеряемое напряжение U. Один зажим обычно соединен с корпусом прибора, поэтому его называют корпусным и обозначают  . Другой зажим является потенциальным.

Для уменьшения погрешности измерения и влияния помех корпусный зажим вольтметра соединяется с корпусным зажимом генераторов и других приборов (используемых в эксперименте) или присоединяется к точкам цепи, потенциал которых ближе к нулевому. При этом следует избегать касания корпусов приборов.

Таким образом, при измерении напряжений нужно брать приборы с большим внутренним сопротивлением и выбирать пределы измерения так, чтобы при измерении стрелка прибора отклонялась на возможно больший угол.

Измерение мощности. Измерение мощности в цепях постоянного тока, активной и реактивной мощностей в цепях переменного тока (однофазных и трехфазных) промышленной частоты производится обычно электродинамическими и ферродинамическими ваттметрами.

Схема подключения ваттметра PW для измерения в цепях постоянного тока или в однофазной цепи переменного тока приведена на рис. 8.5.

Рисунок 8.5–Электрическая схема для измерения мощности

Такая схема включения обеспечивает минимальную погрешность измерения, когда сопротивление нагрузки намного больше сопротивления токовой катушки ваттметра, что в большинстве случаев имеет место. При этом неподвижная (токовая) катушка ваттметра включается в разрыв цепи, а подвижная катушка (напряжения) подключается параллельно нагрузке.

Начала катушек (генераторные зажимы) обозначаются звездочкой (*) или знаком (+). Эти зажимы должны быть подключены к положительному полюсу источника питания.

В цепях постоянного тока потребляемая нагрузкой мощность определяется произведением тока в нагрузке на падение напряжения на ней: P = UI.

При измерении мощности в однофазной цепи переменного тока показание ваттметра соответствует активной мощности (Вт):

P = UIcosφ,

где U и I – среднеквадратические значения напряжения и тока нагрузки; φ – фазовый сдвиг между током и напряжением.

При этом обмотка напряжения ваттметра включается на фазное напряжение, а обмотка тока включается в рассечку провода фазы.

Реактивная мощность (в варах) в лабораторном эксперименте обычно не измеряется, а определяется из выражения

Q = UIsinφ.

Для нахождения мощности в трехфазной четырехполюсной цепи при несимметричной нагрузке необходимо взять алгебраическую сумму показаний трех ваттметров, включенных в каждую фазу:

Р = РА + РВРС .

Электродинамические ваттметры, предназначенные для измерения мощности в цепях постоянного и переменного тока низкой частоты (16…5000 Гц), выпускаются от 0,1 до 2,5 класса точности. Они рассчитаны на непосредственное включение в цепь с напряжением от 15 до 300 В при токе в цепи от 0,25 до 10 А.