Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МСС_консп_лекц.doc
Скачиваний:
19
Добавлен:
05.09.2019
Размер:
4.29 Mб
Скачать

Из приведенных формул видно, что разность давлений не зависит от h0 (уровня размещения дифманометра).

Кроме того, так как r << rB, то они упрощается:

P = g r (H h).

Из приведённых зависимостей видно, что погрешности измерений рассмотренными УМ определяются в основном изменением плотности (r) жидкости, находящейся в подводящих (импульсных) к дифманометру линиях от температуры.

Поплавковые УМ. В них ЧЭ является поплавок, плавающий на поверхности жидкости. Перемещение его вместе с жидкостью преобразуется в электрический сигнал или в метрические единицы. Простейший УМ (рис. 7.3) содержит поплавок, подвешенный на гибком тросе или тягах. На другом конце троса закреплён указатель – стрелка, перемещающаяся по метрической шкале, откалиброванной в единицах уровня. В УМ с дистанционной передачей поплавок соединяется с преобразователем линейных погрешностей в электрический сигнал (индуктивный или трансформаторный преобразователи).

Р исунок 7.3–Схема поплавкового уровнемера

Ультразвуковые УМ.

Ультразвуковой метод (УЗ-метод) измерения уровня получил широкое распространение в промышленности и в различных технологиях. Это объясняется тем, что УЗ-метод обеспечивает бесконтактное измерение уровня агрессивных и взрывоопасных сред при высоких температурах и давлениях, что очень важно для нефтегазового комплекса, который имеет дело в основном со взрывоопасными и легковоспламеняющимися веществами и газами.

На основе УЗ-метода строятся как УМ, так и сигнализаторы уровня. По принципу работы их можно разбить на три группы: УЗ «локации», «прохождения» и «демпфирования».

В УМ, работающих на принципе локации (отражение от границы двух сред) (рис. 7.4,а,б), информативной величиной служит время распространения УЗ импульса (t) от границы раздела и обратно.

Для ;

,

где hx уровень; Vв, Vж скорость распространения УЗ-волн в воздухе и жидкости.

Так как Vж > Vв, то t1 > t2.

При локации через газ, воздух необходима большая энергия от излучателя, чем при локации через жидкость из-за рассеяния, но в жидкости появляется зависимость времени прохождения от свойств самой жидкости.

Основываясь на принципе прохождения, изготавливаются сигнализаторы уровня (рис. 7.4,в). Информативной величиной в них является уровень акустических потерь в воздушном зазоре между излучателем и приёмником с одной стороны и контролируемой средой – с другой. Чем ни выше уровень контролируемой среды, тем меньше воздушный зазор, тем меньше рассеяние акустической энергии и больше сигнал на приёмнике. Изменяя расположение передатчика и приёмника, а также регулируя чувствительность приёмника, можно настроить канал на определённый уровень контролируемой жидкости.

Сигнализаторы уровня так же строятся на принципе демпфирования (рис. 3.4,г, д), при котором информативной величиной являются потери энергии УЗ-поля в промежутке между излучателем (пьезо-элементом) и жидкостью. Если потери большие, то колебания автоколебательной системы «пьезоэлемент–генератор» срываются, что сигнализирует о достижении жидкостью требуемого уровня.

а

б

в

г д

Рисунок 7.4–Схемы измерения уровня акустическим методом