Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
курс_раб_12.docx
Скачиваний:
5
Добавлен:
04.09.2019
Размер:
165.02 Кб
Скачать

3. Сравнение двух вероятностей биномиальных распределений

Пусть известны результаты двух серий независимых испытаний: в первой серии проведено п1 опытов, и событие А появилось т1 раз; во второй серии из п2 опытов событие А появилось т2 раз. Обозначим неизвестную вероятность появления события А в одном опыте первой серии через р1, а во второй серии – через р2. Требуется проверить при уровне значимости α нулевую гипотезу о равенстве этих вероятностей: Но: р1 = р2.

В качестве критерия выбирается нормированная нормально распределенная случайная величина

.

Наблюдаемое значение критерия вычисляется по формуле:

.

Построение критической области:

а) при конкурирующей гипотезе Н1: р1р2 uкр определяется из равенства , и двусторонняя критическая область задается неравенством |U| > uкр.

б) при конкурирующей гипотезе Н1: р1 > р2 uкр для правосторонней крити-ческой области находится из условия , и вид критической области: U > uкр.

в) при конкурирующей гипотезе Но: р1 < р2 левосторонняя критическая область имеет вид U < – uкр, где uкр находится по формуле из пункта б).

Пример. В серии из 20 независимых испытаний событие А появилось 8 раз, в серии из 15 испытаний – 7 раз. При уровне значимости α = 0,05 проверяется

нулевая гипотеза Но: р1 = р2 при конкурирующей гипотезе Но: р1 < р2.

Решение.

Критическая область – левосторонняя, следова-

тельно, икр = 1,645, и критическая область имеет вид U < - 1,645. Вычислим инабл = Uнабл > – uкр, следовательно, гипотеза принимается, и можно считать, что вероятность события А в обеих сериях испытаний одинакова.

4. Проверка гипотезы о значимости выборочного

коэффициента корреляции

Пусть имеется выборка объема п из нормально распределенной двумерной генеральной совокупности (Х, Y), и по ней найден выборочный коэффициент корреляции rB ≠ 0. Требуется при заданном уровне значимости α проверить нулевую гипотезу о равенстве нулю генерального коэффициента корреляции:

Ho: rГ = 0 при конкурирующей гипотезе Н1: rГ ≠ 0. Критерием является случайная величина

,

имеющая при справедливости нулевой гипотезы распределение Стьюдента с k = n – 2 степенями свободы. Критическая область при заданном виде конку-рирующей гипотезы является двусторонней и задается неравенством |T| > tкр, где tкр(α, k) находится по таблице критических точек распределения Стьюдента.

Пример. По выборке объема п = 150, извлеченной из нормально распреде-ленной двумерной генеральной совокупности, вычислен выборочный коэффициент корреляции rB = - 0,37. Проверим при уровне значимости α = 0,01 нулевую гипотезу Ho: rГ = 0 о равенстве нулю генерального коэффициента корреляции при конкурирующей гипотезе Н1: rГ ≠ 0.

Решение.

Критическая точка tкр(0,01; 150) = 2,58. Вычислим наблюдаемое значение критерия: Поскольку |Tнабл | > tкр, нулевая гипо-теза отвергается, то есть Х и Y коррелированны.