Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
fizika.docx
Скачиваний:
5
Добавлен:
03.09.2019
Размер:
943.97 Кб
Скачать

13. Правило кирхгофа. Работа и мощность в цепи постоянного тока. Закон Джоуля – ленца.

Зако́ны Кирхго́фа (или правила Кирхгофа) — соотношения, которые выполняются между токами и напряжениями на участках любой электрической цепи. Правила Кирхгофа позволяют рассчитывать любые электрические цепи постоянного и квазистационарного тока.[1] Имеют особое значение в электротехнике из-за своей универсальности, так как пригодны для решения многих задач теории электрических цепей. Применение правил Кирхгофа к линейной цепи позволяет получить систему линейных уравнений относительно токов, и соответственно, найти значение токов на всех ветвях цепи.

Мощность по определению N = A/t, следовательно,

Русский ученый X. Ленд и английский ученый Д. Джоуль опытным путем в середине прошлого века установили независимо друг от друга закон, который называется законом Джоуля — Ленца и читается так: при прохождении тока по проводнику количество теплоты, выделившееся в проводнике, прямо пропорционально квадрату силы тока, сопротивлению проводника и времени прохождения тока..

Полная замкнутая цепь представляет собой электрическую цепь, в состав которой входят внешние сопротивления и источ-ник тока (рис. 25). Как один из участков цепи, источник тока обладает сопротивлением, которое

называют внутренним, r.

Для того чтобы ток проходил по замкнутой цепи, необходимо, чтобы в источнике тока зарядам сообщалась дополнительная энергия, она появляется за счет работы по перемещению зарядов, которую производят силы неэлектрического происхождения (сторонние силы) против сил электрического поля. Источник тока характеризуется энергетической характеристикой, которая называется ЭДС — электродвижущая сила источника. ЭДС измеряется отношением работы сторонних сил по перемещению вдоль замкнутой цепи положительного заряда к величине этого заряда

тивление участка цепи часто называют падением напряжения на этом участке. Таким образом, ЭДС равна сумме падений напряжений на внутреннем и внешнем участках замкнутой цепи. Обычно это выражение записывают так: I = E/(R + г). Эту зависимость опытным путем получил Георг Ом, называется она законом Ома для полной цепи и читается так: сила тока в полной цепи прямо пропорциональна ЭДС источника тока и обратно пропорциональна полному сопротивлению цепи. При разомкнутой цепи ЭДС равна напряжению на зажимах источника и, следовательно, может быть измерена вольтметром.

Закон Джоуля — Ленца — физический закон, дающий количественную оценку теплового действия электрического тока

В математической форме этот закон имеет вид

где dQ — количество теплоты, выделяемое за промежуток времени dt, I — сила тока, R — сопротивление, Q — полное количество теплоты, выделенное за промежуток времени от t1 до t2. В случае постоянных силы тока и сопротивления:

14. Работа выхода электронов из металлов. Термоэлектронная эмиссия.

Как показывает опыт, свободные электроны при обычных температурах практически не покидают металл. Следовательно, в поверхностном слое металла должно быть задерживающее электрическое поле, препятствующее выходу электронов из металла в окружающий вакуум. Работа, которую нужно затратить для удаления электрона из металла в вакуум, называется работой выхода. Укажем две вероятные причины появления работы выхода:

1. Если электрон по какой-то причине удаляется из металла, то в том месте, которое электрон покинул, возникает избыточный положительный заряд и электрон притягивается к индуцированному им самим положительному заряду.

2. Отдельные электроны, покидая металл, удаляются от него на расстояния порядка атомных и создают тем самым над поверхностью металла «электронное облако», плотность которого быстро убывает с расстоянием. Это облако вместе с наружным слоем положительных ионов решетки образует двойной электрический слой, поле которого подобно полю плоского конденсатора. Толщина этого слоя равна нескольким межатомным расстояниям (10–10—10–9 м). Он не создает электрического поля во внешнем пространстве, но препятствует выходу свободных электронов из металла.

Таким образом, электрон при вылете из металла должен преодолеть задерживающее его электрическое поле двойного слоя. Разность потенциалов Dj в этом слое, называемая поверхностным скачком потенциала, определяется работой выхода (А) электрона из металла:

где е — заряд электрона. Так как вне двойного слоя электрическое поле отсутствует, то потенциал среды равен нулю, а внутри металла потенциал положителен и равен Dj. Потенциальная энергия свободного электрона внутри металла равна —еDj и является относительно вакуума отрицательной. Исходя из этого можно считать, что весь объем металла для электронов проводимости представляет потенциальную яму с плоским дном, глубина которой равна работе выхода А.

Работа выхода выражается в электрон-вольтах (эВ): 1 эВ равен работе, совершаемой силами поля при перемещении элементарного электрического заряда (заряда, равного заряду электрона) при прохождении им разности потенциалов в 1 В. Так как заряд электрона равен 1,6×10–19 Кл, то 1 эВ= 1,6×10–19 Дж.

Работа выхода зависит от химической природы металлов и от чистоты их поверхности и колеблется в пределах нескольких электрон-вольт (например, у калия A = 2,2 эВ, у платины A=6,3 эВ). Подобрав определенным образом покрытие поверхности, можно значительно уменьшить работу выхода. Например, если нанести на поверхность вольфрама (А = 4,5 эВ) слой оксида щелочно-земельного металла (Са, Sr, Ва), то работа выхода снижается до 2 эВ.

Термоэлектро́нная эми́ссия (эффект Ричардсона, эффект Эдисона) — явление испускания электронов нагретыми телами. Концентрация свободных электронов в металлах достаточно высока, поэтому даже при средних температурах вследствие распределения электронов по скоростям (по энергии) некоторые электроны обладают энергией, достаточной для преодоления потенциального барьера на границе металла. С повышением температуры число электронов, кинетическая энергия теплового движения которых больше работы выхода, растет, и явление термоэлектронной эмиссии становится заметным.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]