Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
физика тема11.docx
Скачиваний:
40
Добавлен:
02.09.2019
Размер:
185.66 Кб
Скачать

47. Объясните, почему энергетический спектр для прямоугольной потенциальной ямы дискретен, я число уровней конечно.

Энергетический спектр частицы является дискретным: чем больше глубина  и ширина  потенциальной ямы, тем ниже наклон прямой и тем больше точек пересечения имеет прямая с синусоидой. Следовательно, тем больше энергетических уровней помещается в потенциальной яме.

48. Нарисуйте и объясните график 2 для частицы в бесконечно глубокой прямоугольной потенциальной яме.

Плотность вероятности оказывается существенно различной для разных состояний частицы, т.е. для разных значений квантового числа   . Так, например, в основном состоянии, т.е. при   , частица с наибольшей вероятностью находится в центре ямы, а в первом возбужденном состоянии, т.е. при   , вероятность обнаружить частицу в центре ямы равна нулю, хотя пребывание частицы в левой и правой половинах ямы равновероятно.     Вероятность того, что частица в яме находится в области   , определяется выражением

     

49. Сравните поведение классической и квантово-механической частиц в потенциальной яме.

 Следует отметить, что минимальное значение энергии частицы, находящейся в основном состоянии, отлично от нуля. Этот результат согласуется с соотношением неопределенностей и является общим для всех задач квантовой механики. В классической механике минимальную энергию, равную нулю, имеет покоящаяся в яме частица. Такого состояния покоя у квантовой частицы не существует.

50. Тунне́льный эффект — преодоление микрочастицей потенциального барьера в случае, когда её полная энергия (остающаяся при туннелировании неизменной) меньше высоты барьера. Туннельный эффект — явление исключительно квантовой природы, невозможное и даже полностью противоречащее классической механике. Аналогом туннельного эффекта в волновой оптике может служить проникновение световой волны внутрь отражающей среды (на расстояния порядка длины световой волны) в условиях, когда, с точки зрения геометрической оптики, происходит полное внутреннее отражение. Явление туннелирования лежит в основе многих важных процессов в атомной и молекулярной физике, в физике атомного ядра, твёрдого тела и т. д.

51. Какое влияние оказывает на классическую частицу и квантово-механическую высокий барьер, низкий барьер, яма?

стационарное уравнение Шредингера, описывающее движение частицы в «потенциальной яме» с бесконечно высокими «стенками», удовлетворяется только при собственных значениях , зависящих от целого числа n. Следовательно, энергия En частицы в «потенциальной яме» с бесконечно высокими «стенками» принимает лишь определенные дискретные значения, т. е. квантуется. Квантованные значения энергии En называются уровнями энергии, а число л, определяющее энергетические уровни частицы, называется главным квантовым числом. Таким образом, микрочастица в «потенциальной яме» с бесконечно высокими «стенками» может находиться только на определенном энергетическом уровне En, или, как говорят, частица находится в квантовом состоянии n.   Применение уравнения Шредингера к частице в «потенциальной яме» с бесконечно высокими «стенками» приводит к квантованным значениям энергии, в то время как классическая механика на энергию этой частицы никаких ограничений не накладывает.

52. Гармонический осциллятор — это система, которая при смещении из положения равновесия испытывает действие возвращающей силы , пропорциональной смещению (согласно закону Гука):

где  — положительная константа, описывающая жёсткость системы.

Если  — единственная сила, действующая на систему, то систему называют простым или консервативным гармоническим осциллятором

Если имеется ещё и сила трения (затухание), пропорциональная скорости движения (вязкое трение), то такую систему называют затухающим или диссипативным осциллятором

Если осциллятор предоставлен сам себе, то говорят, что он совершает свободные колебания. Если же присутствует внешняя сила (зависящая от времени), то говорят, что осциллятор испытывает вынужденные колебания.

Механическими примерами гармонического осциллятора являются математический маятник (с малыми углами отклонения), груз на пружине, торсионный маятник и акустические системы. Среди других аналогов гармонического осциллятора стоит выделить электрический гармонический осциллятор

Соседние файлы в предмете Физика