
- •3.Опыты по рассеиванию -частиц: схема опыта, сущность и особенности эксперимента, значение.
- •8. Обобщённая формула Бальмера: формула, физический смысл.
- •11) Первый постулат Бо8/ра (постулат о стационарных состояниях): формулировка, диаграмма энергетических уровней.
- •12.Второй постулат Бора (условие частот): формулировка, формула, диаграмма энергетических уровней.
- •14. Доказательство дискретности значений энергии атома: опыт Франка и Герца.
- •15. Значение и недостатки теории Бора.
- •16. Предпосылки создания гипотезы Луи де Бройля.
- •17. Физическая сущность и формулировка гипотезы де Бройля.
- •18. Записать и пояснить физический смысл волновой функции.
- •19. Вывести выражение, определяющее длину волны де Бройля – д.
- •20. Как де Бройль обосновал правило квантования момента импульса в третьем постулате Бора?
- •21. Найдите зависимость длины волны электрона от ускоряющего напряжения электрического поля, в котором он находится.
- •22. Физические основы явления дифракции электронов в опытах к. Дэвиссона и л.Джермера (схема установки, выводы).
- •23. Анализ графика зависимости количества отражающихся от монокристалла электронов от их скорости движения.
- •24. Сравнительный анализ электронограммы в опытах по дифракции электронов с дифракционной картиной рентгеновских лучей.
- •25. Запись и анализ формулы для определения длины волны в опытах к. Дэвиссона и л.Джермера.
- •26. Применение дифракции частиц в медицине, фармации, технических приборах.
- •27.Устройство и принцип действия магнитной линзы
- •28.Устройство и принцип действия растрового электронного микроскопа.
- •29. Благодаря чему разрешающая способность электронного микроскопа выше, чем у оптического?
- •30. Как проявляются волновые свойства атомов и ионов?
- •31. Статистическая интерпретация волн де Бройля.
- •36.С оотношения неопределённостей
- •37. Физический смысл соотношений неопределённостей.
- •38. Какой смысл имеют величины, входящие в формулу е t h
- •40. Какое состояние называют стационарным, квазистационарным?
- •41. Как можно измерить среднее время жизни квазистационарного состояния атома?
- •42. Получите основное уравнение квантовой механики (уравнение Шрёдингера) для стационарных состояний?
- •47. Объясните, почему энергетический спектр для прямоугольной потенциальной ямы дискретен, я число уровней конечно.
- •49. Сравните поведение классической и квантово-механической частиц в потенциальной яме.
- •53. Перечислите основные положения, используемые при вычислении спектра гармонического осциллятора методом Шрёдингера
23. Анализ графика зависимости количества отражающихся от монокристалла электронов от их скорости движения.
График выражает зависимость количества отражающихся от кристалла электронов от их скорости и количества движения(импульса), при этом кривая представляет собой совокупность резких минимумов и максимумов, расположенных примерно на одинаковых расстояниях. Следовательно, от монокристалла способны отражаться лишь электроны с определенными скоростями. Известно, что монокристалл никеля – объемная дифракционная решетка. На графике наблюдаем результат дифракции – дифракционную картину.
Т.к. дифракция – оптическое явление и связано с понятием волны, то с распространением потока электронов можно связать волновой процесс.
24. Сравнительный анализ электронограммы в опытах по дифракции электронов с дифракционной картиной рентгеновских лучей.
Теория
дифракции электронов строилась по
аналогии с теорией дифракции
рентгеновских лучей,
однако физ. природа этих явлений
существенно различна. В отличие от
рентгеновских лучей, к-рые рассеиваются
на электронной плотности атомов,
рассеяние электронов, обладающих
электрич. зарядом, определяется их
взаимодействием с электростатич. полем
атома, создаваемым как положительно
заряженным ядром, так и электронной
оболочкой атома. T. о., рассеивающая
способность атома зависит от его строения
и у разных хим. элементов различна.
Количественно она характеризуется
атомной амплитудой рассеяния,
пропорциональной атомному номеру
элемента Z:
где
=2,38*106 см-1, fр -
атомная амплитуда рассеяния рентгеновских
лучей. С ростом
значение fэ быстро
падает:
.
Атомная амплитуда рассеяния характеризует
интенсивность рассеянного пучка, к-рая
~
.
Электроны взаимодействуют с атомами в миллионы раз сильнее, чем рентгеновское излучение (и тем более нейтроны), и амплитуда рассеяния электронов более чем на три порядка превышает амплитуду рассеяния рентгеновских лучей. Соответственно интенсивность рассеянного пучка электронов на 6-7 порядков выше, чем рентгеновского. Вследствие интенсивного взаимодействия электронов с атомами дифракц. эксперименты проводят в высоком вакууме, а в качестве образцов используют плёнки толщиной ~10 - 50 нм (в опытах на прохождение) либо применяют метод отражения, в к-ром рассеяние происходит в тончайшем поверхностном слое кристалла ~1 -10 нм.
25. Запись и анализ формулы для определения длины волны в опытах к. Дэвиссона и л.Джермера.
26. Применение дифракции частиц в медицине, фармации, технических приборах.
Процесс дифракции электронов получил широкое применение в аналитических исследованиях кристаллических структур металлов, сплавов, полупроводниковых материалов.
27.Устройство и принцип действия магнитной линзы
Магнитная линза — устройство электронной оптики, линза для фокусировки электронов. Представляет собой цилиндрически симметричный электромагнит с очень острыми кольцевыми наконечниками полюсов, который создаёт в малой области очень сильное неоднородное магнитное поле, которое и отклоняет летящие вертикально через эту область электроны.
Принцип фокусировки электронного луча неоднородным магнитным полем короткой катушки иллюстрирует рис. В общем случае вектор скорости электрона V направлен под некоторым углом α к оси катушки (линии ОС). Разложим вектор скорости электрона в точке А на осевую и радиальную составляющие (Vz и Vr соответственно). Соответствующие составляющие вектора индукции магнитного поля В в этой точке обозначим Вz и Вr. Векторы Vz и Вr обусловливают составляющую силы Лоренца Fτ(рис. 4, справа, вверху). Сила Fτ вызывает вращение электронов вокруг оси ОС, т.е. появляется азимутальная составляющая скорости Vτ, которая совместно с Вz образует силу Fr, направленную к оси катушки. Нетрудно убедиться в том, что после пересечения плоскости О1О2, несмотря на изменение направления радиальной составляющей магнитного поля на противоположное, поперечная сила Fτ по-прежнему отклоняет электроны к оси ОС. Изменяя индукцию магнитного поля, можно добиться пересечения траекторий всех электронов в точке С, обеспечивая тем самым фокусировку электронного потока.