
- •3.Опыты по рассеиванию -частиц: схема опыта, сущность и особенности эксперимента, значение.
- •8. Обобщённая формула Бальмера: формула, физический смысл.
- •11) Первый постулат Бо8/ра (постулат о стационарных состояниях): формулировка, диаграмма энергетических уровней.
- •12.Второй постулат Бора (условие частот): формулировка, формула, диаграмма энергетических уровней.
- •14. Доказательство дискретности значений энергии атома: опыт Франка и Герца.
- •15. Значение и недостатки теории Бора.
- •16. Предпосылки создания гипотезы Луи де Бройля.
- •17. Физическая сущность и формулировка гипотезы де Бройля.
- •18. Записать и пояснить физический смысл волновой функции.
- •19. Вывести выражение, определяющее длину волны де Бройля – д.
- •20. Как де Бройль обосновал правило квантования момента импульса в третьем постулате Бора?
- •21. Найдите зависимость длины волны электрона от ускоряющего напряжения электрического поля, в котором он находится.
- •22. Физические основы явления дифракции электронов в опытах к. Дэвиссона и л.Джермера (схема установки, выводы).
- •23. Анализ графика зависимости количества отражающихся от монокристалла электронов от их скорости движения.
- •24. Сравнительный анализ электронограммы в опытах по дифракции электронов с дифракционной картиной рентгеновских лучей.
- •25. Запись и анализ формулы для определения длины волны в опытах к. Дэвиссона и л.Джермера.
- •26. Применение дифракции частиц в медицине, фармации, технических приборах.
- •27.Устройство и принцип действия магнитной линзы
- •28.Устройство и принцип действия растрового электронного микроскопа.
- •29. Благодаря чему разрешающая способность электронного микроскопа выше, чем у оптического?
- •30. Как проявляются волновые свойства атомов и ионов?
- •31. Статистическая интерпретация волн де Бройля.
- •36.С оотношения неопределённостей
- •37. Физический смысл соотношений неопределённостей.
- •38. Какой смысл имеют величины, входящие в формулу е t h
- •40. Какое состояние называют стационарным, квазистационарным?
- •41. Как можно измерить среднее время жизни квазистационарного состояния атома?
- •42. Получите основное уравнение квантовой механики (уравнение Шрёдингера) для стационарных состояний?
- •47. Объясните, почему энергетический спектр для прямоугольной потенциальной ямы дискретен, я число уровней конечно.
- •49. Сравните поведение классической и квантово-механической частиц в потенциальной яме.
- •53. Перечислите основные положения, используемые при вычислении спектра гармонического осциллятора методом Шрёдингера
14. Доказательство дискретности значений энергии атома: опыт Франка и Герца.
В 1914 году Франк и Герц поставили опыт, подтверждающий теорию Бора: атомы разреженного газа обстреливались медленными электронами с последующим исследованием распределения электронов по абсолютным значениям скоростей до и после столкновения. Результаты показали, что при скоростях электронов меньше некоторого критического значения удары упруги, а при критической скорости столкновения становятся неупругими, электроны теряют энергию, а атомы газа переходят в возбуждённое состояние. При дальнейшем увеличении скорости удары снова становились упругими, пока не достигалась новая критическая скорость. Наблюдаемое явление позволили сделать вывод о том, что атом может или вообще не поглощать энергию, или же поглощать в количествах равных разности энергий стационарных состояний.
15. Значение и недостатки теории Бора.
Значение теории Бора: не только качественно, но и количественно определила величину волновых чисел атома водорода; сделала ясным физический смысл спектральных серий. Это монохроматические излучения, которые возникают в результате перехода атома в данное состояние из всех возможных состояний, расположенных выше данного; объяснила не только спектр испускания водорода, но и спектр поглощения.
Недостатки теории: она не является строго последовательной, т.к. в ней используются квантовые представления и классические Ньютоновские.
16. Предпосылки создания гипотезы Луи де Бройля.
Впервые квантовые свойства были обнаружены у электромагнитного поля. После исследования М. Планком законов теплового излучения тел (1900) в науку вошло представление о "световых порциях" - квантах электромагнитного поля. Эти кванты - фотоны - во многом похожи на частицы (корпускулы): они обладают определённой энергией и импульсом, взаимодействуют с веществом как целое. В то же время давно известны волновые свойства электромагнитного излучения - они проявляются, например, в явлениях дифракции и интерференции света. Таким образом, можно говорить о двойственной природе фотона, о корпускулярно-волновом дуализме.Луи де Бройль внес в современную физику идею о волновых свойствах микрочастиц. Развив идею А. Эйнштейна о двойственной природе, предположил, что поток материальных частиц должен обладать и волновыми свойствами, связанными с их массой и энергией (волны де Бройля). Экспериментальное подтверждение этой идеи было получено в 1927 г. в опытах по дифракции электронов в кристаллах, а позже она получила практическое применение при разработке магнитных линз для электронного микроскопа. Концепцию Луи де Бройля о корпускулярно-волновом дуализме использовал Э. Шредингер при создании волновой механики.
17. Физическая сущность и формулировка гипотезы де Бройля.
Согласно де Бройлю, с каждым микрообъектом связываются, с одной стороны, корпускулярные характеристики - энергия и импульс, а с другой - волновые характеристики - частота и длина волны. Эта формула справедлива для любой частицы с импульсом р. Впоследствии дифракционные явления были обнаружены для нейтронов, атомных и молекулярных пучков. Это окончательно послужило доказательством наличия волновых свойств микрочастиц и позволило описывать их движение в виде волнового процесса, характеризующегося определенной длиной волны, рассчитываемой формуле де Бройля. Наличие волновых свойств микрочастиц - универсальное явление, общее свойство материи. Но волновые свойства макроскопических тел не обнаружены экспериментально, поэтому макроскопические тела проявляют только одну сторону своих свойств - корпускулярную.