Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
What is nanotechnology.doc
Скачиваний:
2
Добавлен:
31.08.2019
Размер:
58.37 Кб
Скачать

What is nanotechnology?

Browse the article What is nanotechnolog

What is nanotechnology?

During the Middle Ages, philosophers attempted to transmute base materials into gold in a process called alchemy. While their efforts proved fruitless, the pseudoscience alchemy paved the way to the real science of chemistry. Through chemistry, we learned more about the world around us, including the fact that all matter is composed of atoms. The types of atoms and the way those atoms join together determines a substance's properties.

Nanotechnology is a multidisciplinary science that looks at how we can manipulate matter at the molecular and atomic level. To do this, we must work on the nanoscale -- a scale so small that we can't see it with a light microscope. In fact, one nanometer is just one-billionth of a meter in size. Atoms are smaller still. It's difficult to quantify an atom's size -- they don't tend to hold a particular shape. But in general, a typical atom is about one-tenth of a nanometer in diameter.

But the nanoscale is where it's at. That's because it's the scale of molecules. By manipulating molecules, we can make all sorts of interesting materials. But like the alchemists of old, we wouldn't make much headway in creating gold. That's because gold is a basic element -- you can't break it down into a simpler form.

We could make other interesting substances, though. By manipulating molecules to form in particular shapes, we can build materials with amazing properties. One example is a carbon nanotube. To create a carbon nanotube, you start with a sheet of graphite molecules, which you roll up into a tube. The orientation of the molecules determines the nanotube's properties. For example, you could end up with a conductor or a semiconductor. Rolled the right way, the carbon nanotube will be hundreds of times stronger than steel but only one-sixth the weight [source: NASA].

That's just one aspect of nanotechnology. Another is that materials aren't the same at the nanoscale as they are at larger scales. Researchers with the United States Department of Energy discovered in 2005 that gold shines differently at the nanoscale than it does in bulk. They also noticed that materials possess different properties of magnetism and temperature at the nanoscale [source: U.S. Department of Energy].

Because the science deals with the basic building blocks of matter, there are countless applications. Some seem almost mundane -- nanoparticles of zinc oxide in sunblock allow you to spread a transparent lotion on your skin and remain protected. Others sound like science fiction -- doctors are attempting to use the protein casings from viruses to deliver minute amounts of drugs to treat cancer. As we learn more about how molecules work and how to manipulate them, we'll change the world. The biggest revelations will come from the smallest of sources.

How Nanotechnology Works

by Kevin Bonsor and Jonathan Strickland

I ntroduction to How Nanotechnology Works

There's an unprecedented multidisciplinary convergence of scientists dedicated to the study of a world so small, we can't see it -- even with a light microscope. That world is the field of nanotechnology, the realm of atoms and nanostructures. Nanotechnology i­s so new, no one is really sure what will come of it. Even so, predictions range from the ability to reproduce things like diamonds and food to the world being devoured by self-replicating nanorobots.

In order to understand the unusual world of nanotechnology, we need to get an idea of the units of measure involved. A centimeter is one-hundredth of a meter, a millimeter is one-thousandth of a meter, and a micrometer is one-millionth of a meter, but all of these are still huge compared to the nanoscale. A nanometer (nm) is one-billionth of a meter, smaller than the wavelength of visible light and a hundred-thousandth the width of a human hair [source:Berkeley Lab].

As small as a nanometer is, it's still large compared to the atomic scale. An atom has a diameter of about 0.1 nm. An atom's nucleus is much smaller -- about 0.00001 nm. Atoms are the building blocks for all matter in our universe. You and everything around you are made of atoms. Nature has perfected the science of manufacturing matter molecularly. For instance, our bodies are assembled in a specific manner from millions of living cells. Cells are nature's nanomachines. At the atomic scale, elements are at their most basic level. On the nanoscale, we can potentially put these atoms together to make almost anything.

In a lecture called "Small Wonders:The World of Nanoscience," Nobel Prize winner Dr. Horst Störmer said that the nanoscale is more interesting than the atomic scale because the nanoscale is the first point where we can assemble something -- it's not until we start putting atoms together that we can make anything useful.

In this article, we'll learn about what nanotechnology means today and what the future of nanotechnology may hold. We'll also look at the potential risks that come with working at the nanoscale.

In the next section, we'll learn more about our world on the nanoscale.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]