Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Алфёров А.С. Маркетинг для радиоинженеров. СПб....doc
Скачиваний:
15
Добавлен:
28.08.2019
Размер:
3.04 Mб
Скачать

6.2. Объем

Объемы партии N поставок, например, часто используются в технико-экономиче­ских расчетах. N – детерминированная величина во многих документах. Стохастические величины N – это, в основном, объемы продаж, загрузки складов, выпуска продукции, ремонтов, число покупателей и т.п.

Объемы продаж формируют распределение, которое строят на вероятностном графике для оценки эффективности рекламы или потерь из-за конкурентов. Функции F(N) строятся регулярно по мере комплектования данных.

Выборки должны быть составлены до и после рекламной компании, при условии, что исследуемые воздействия наблюдается при неизменных факторах.

Загрузку продавцов или привлекательность выкладки товаров оценивают по числу посетителей, стоящих у витрины, прилавка и т.п. Объем выборки здесь - это число наблюдений, в которых подсчитывались привлеченные посетители – Nj.

Рис. 34. F(N) – распределение числа посетителей около витрины до рекламы и после рекламы.

Основным объектом расчетов являются товарные запасы в торговле и объемы комплектующих или продукции на предприятиях. Загрузка всех складов подлежит оптимизации, поскольку хранение сопряжено с большими затратами и рисками потерь. Объемы всех складов имеют нижние пределы, обусловленные уровнем непредсказуемости потребителей – объемами и сроками их заказов.

Некоторые потребительские ценности не складируются, например, услуги. Фактически «на складе» оказываются исполнители услуг. К примеру, ремонтники находятся в режиме ожидания заявок потребителей. Требуется не упустить потенциальных клиентов, и, с другой стороны, не затягивать отдых ремонтников.

В рассматриваемых задачах необходимы функции распределения объемов заказанной продукции или услуг, предоставленных потребителю в идентичных, на сколько это возможно, условиях. Функции распределения поставок F(Nj) применяются для расчетов объемов склада при заданных рисках дефицита, т.е. неудовлетворенности самого большего заказа, а также риска неликвидности, т.е. доли продукции, которая не востребована потребителям и подлежит утилизации.

6.3. Время

Время является детерминированной величиной в технико-экономической документации. Совместно с объемом время является фундаментальной величиной в прогнозирующих расчетах, в проектах и планах, в испытаниях и т.п.

Время в стохастических моделях измеряется в логарифмическом масштабе – это обусловлено природой всех реальных процессов. Задачи с функциями распределения, имеющими временную ось F(t), являются наиболее сложными в связи с отсутствием оперативных оценок достоверности. При этом временной показатель является важнейшим в производственных задачах.

Размерность времени t – часы, циклы, годы и т.п. используется в распределениях сроков продажи, ремонта, хранения, поиска, испытаний и т.д. Главная проблема при анализе эмпирических распределений – формирование полных выборок. Момент начала отсчета времени во всех реализациях должен быть один, что далеко не всегда возможно, причем, все длительности, краткие и длинные, должны быть зафиксированы. Потери реализаций образуют неполные усеченные выборки, что является источником методических погрешностей.

Среди рассматриваемых функций главными «героями» научных публикаций являются показатели надежности. В испытаниях и в эксплуатации определялись периоды до отказа, а по ним рассчитывалось, в основном, среднее время безотказной работы, или время между отказами, или до первого отказа. Изредка применяют гамма-процентный ресурс – это период, в течение которого отказывает известная доля изделий, например, 5%. Указанные показатели рассчитываются, исходя из экспоненциального распределения. На графике изображается экспонентциальная функция в виде прямой с неизменным наклоном, поскольку К=1 (см. выше).

Если К=1, то за период 10Т откажет вся партия (выборка), а за период 0,1Т отказы составят 0,1 от всей партии. Здесь Т – средняя наработка до отказа. Между тем, реальные данные аппроксимируются распределением с параметром К<<0,5; это является причиной чрезмерно грубых ошибок в расчетах с допущением К=1.

Аналогичны функции распределения продаж (реализаций). Эмпирическое распределение продаж накапливается, как периоды между исходным моментом, началом отсчета и моментами обслуживания покупателей. Теоретические функции распределения составляют арсенал многих расчетных методик, доныне не используемых. Вероятностные графики для общеизвестных показателей надежности и для необоснованно отторгнутых показателей торговли идентичны. Равно как и показателей обслуживания, независимо от его вида.

В прикладных задачах широко используются удельные характеристики, типа отношении объема к деньгам или времени. В частности, труд оценивается по производительности – шт/час или ставке – руб/час. Для товаров есть цены – кг/руб или расходы – кг/час. Все данные названного вида могут составить выборки для построения вероятностных графиков.

Публикации со статистическим анализом обычно ограничиваются поиском средних или иных статистических мер с численной (точечной) оценкой доверительных интервалов. Между тем, отклонения реализаций от теоретической функции столь многозначны, что их распределения вносят существенные методические погрешности. Поэтому анализ изменения статистической меры из-за исследуемого фактора (полезный сигнал) ограничен по чувствительности на фоне рассеяния численных оценок (помехи). Вероятностный график привносит признаки, достаточные для распознавания весьма малой реакции статистического ансамбля на внешнее воздействие. С этой целью многократно строятся функции распределения в течение действия исследуемого процесса, а также доверительные интервалы. Затем определяются тренды построений по методикам, присущим вероятностному графику.

Алгоритм расчетов на вероятностном графике состоят из геометрических приемов вплоть до этапа, на котором преобразуется вертикальный масштаб: из линейного, отображающего коэффициент показателя формы К, в нелинейный, т.е. вероятностный масштаб. Определяются отрезки, углы, координаты и т.п. На финишных этапах действуют правила из теории вероятностей для квантилей, уровней значимости, областей экстремальных значений и т.п.

Каждая практическая задача отличается неповторимым «ключом» к решению. Поиск подхода к любой задаче, из «арсенала» решаемых на вероятностном графике, упрощается по мере освоения приемов и правил, наиболее распространенных. Ниже приводятся подходы к решению типовых статистических задач.