Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Алфёров А.С. Маркетинг для радиоинженеров. СПб....doc
Скачиваний:
15
Добавлен:
28.08.2019
Размер:
3.04 Mб
Скачать

5.8. Анализ отклонений эмпирических данных от Fт(х)

Отклонение эмпирических данных от теоретических анализируются в задачах оценок погрешностей измерений, представительности выборок, достоверности квантилей и т.п. Предполагается в этих задачах, что теоретическая функция Fт(х) адекватно представляет статистический ансамбль. Эмпирические значения отклоняются соответственно гипотезе, которую требуется проверить. К примеру, на данные о погоде за год накладываются погрешности градусника. Есть теоретическая функция распределения температур Fт(Т) и эмпирическая Fэ(Т), по которой надо проверить гипотезу.

Рис. 30. Анализ погрешности измерений градусника.

Здесь Fт() – функция распределения погрешностей градусника. Fт(т) и Fэ(т) – функция распределения температур теоретическая и эмпирическая.

П редполагается по гипотезе, что показания градусника имеют рассеяние, соответствующее НР. Поэтому измеряются на поле вероятностного графика расстояние по горизонтали между эмпирическими точками и реализациями Fэi) – Fтi) = Тi (см. рис. 30). Для Тi строится горизонтальный масштаб, достаточно «растянутый». Под ним размещаются точки, а по ним строится новая функция распределения отклонений Fэ(Тi). Если гипотеза верна, то новая функция будет хорошо аппроксимироваться НР, ее среднее квадратичное отклонение будет определять погрешность термометра случайную, а отклонение среднего значения – систематичную.

5.9. Анализ взаимосвязей между параметрами

Многие объекты характеризуются несколькими признаками, причем между ними могут быть самые разнообразные связи: от детерминированных до полной взаимонезависимости. Например, вес и габариты плат связаны однозначно, а проводимость с твердостью взаимонезависимы. Потери на разных частотах имеют сложные взаимосвязи. Маркетологов обычно интересует, как сочетания признаков товара связаны с объемами продаж, сроками и ценами.

Рис. 31. Корреляционный график взаимосвязи двух параметров Х и Y.

Принято оперировать корреляционными зависимостями между параметрами. Анализируют поле корреляции, измеряя пару значений параметров X и Y у очередного изделия и откладывая их в виде абсциссы и ординаты. Это поле делят интервалами, считают средние интервальные значения и по ним строят зависимости одного параметра от другого – линии регрессии (см. рис. 31).

Практическое применение как корреляционного так и регрессионного анализа ограничено парными взаимосвязями. Обычно приходится оперировать 3–5 параметрами, так что парные регрессии недостаточно информативны. Кроме того, накладываются ограничения на соответствие НР.

Анализ взаимосвязей параметров на вероятностном графике не имеет названных ограничений. Для каждого параметра строится горизонтальная ось X,Y,Z и т.п. (см. рис. 32). Все комплекты показаний на очередные изделия нумеруются. Номера откладываются по всем осям точно так же, как выше размещались точки. Построение вероятностного графика для каждой оси ведется точно так же, как рассмотрено выше для одного параметра, но вместо точек ставят маленькие номера. Оси целесообразно разместить «лесенкой» с тем, чтобы было удобнее считывать информацию. Кроме того, расстояния между экстремальными значениями (Rx, Ry, Rz) по каждой оси целесообразно изображать равными, выбирая соответствующие масштабы. Тогда все построенные функции будут, примерно, параллельными. Вертикальный масштаб может быть общим для всех функций или индивидуальным, если законы распределения определяются точно также как для «одинарных» функций.

Рис. 32. Вероятностный график, построенный для анализа трех параметров X, Y и Z.

Совместный анализ начинается с разбиения всех функций на интервалы. Составляется таблица, где изделия группируются по составу интервалов, в которых их присутствие обнаружилось по номерам.

Крайними случаями будут:

  1. Все изделия одинаково размещаются по интервалам, начиная с того, у которого все параметры имеют наименьшее значения и вплоть до изделия с наибольшим значением всех параметров.

  2. Все изделия разместились в интервалах хаотически, не наблюдается повторяемости, что демонстрирует их взаимонезависимость.

Все промежуточные ситуации демонстрируют взаимозависимость.

Выявляются изделия, разместившиеся по интервалам идентично, затем с различиями на 1 интервал, далее на 2 близлежащих интервала и т.д. Доли таких изделий в выборке заносятся в итоговую таблицу для последующих расчетов.