Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
335610_0F4AB_helevin_n_v_lobanov_a_m_kolesova_o...doc
Скачиваний:
41
Добавлен:
28.08.2019
Размер:
3.94 Mб
Скачать

ПРЕДИСЛОВИЕ

Из года в год . перед генетикой ставятся все более сложные и важные задачи. Она призвана решать многие проблемы охраны здоровья, технологии ряда производств, способствовать повышению материального благосостояния людей и профилактике заболеваний. Знание основных классических положений общей генетики становится потребностью все большего круга специалистов разного профиля.

За период, прошедший со времени выхода в свет первого издания «Задачника» (1976), теоретическая и практическая генетика шагнула далеко вперед. Обогатились понятия о сущности гена и его функциях. Расширились знания в отношении наследственных болезней человека. Разработан ряд новых методов селекции и управления наследственностью организмов. Все это выходит за рамки плана «Задачника» и лишь подчеркивает необходимость глубоких знаний и понимания основных процессов и закономерностей общей генетики, поэтому во втором издании авторы не изменили принцип построения «Задачника» и не внесли коренных изменений. «Задачник» предназначен студентам медицинских, педагогических и других институтов, изучающим курс генетики. В медвузах он может оказать помощь в организации проблемного обучения не только на первом курсе, но и на клинических кафедрах. В силу сходства ряда разделов вузовских программ по общей генетике с программами средних школ отдельные параграфы и задачи могут быть использованы при преподавании генетики в средних школах и на подготовительных отделениях вузов, а также при подготовке в вузы. «Задачник» включает шесть разделов: I. Молекулярная генетика. II. Законы Менделя. III. Неполное доминирование, наследование признаков, сцепленных с полом, множественные аллели, плейотропия, пенетрантность. IV. Явление сцепления признаков и кроссинговер, взаимодействие неаллельных генов. V Анализ родословных. VI. Популяционная генетика. Каждому разделу предшествует пояснительный текст, в котором разбираются механизмы того или иного процесса, знание которых необходимо для понимания сути явления и подбора метода решения задач. В ряде случаев расшифровываются отдельные генетические термины. В конце каждого раздела

3

приводятся комбинированные задачи, обобщающие пройденный материал.

В каждом разделе и параграфе подобраны типовые задачи, для них приведены полные решения. Они помечены двумя звездочками (**). Другие имеют лишь ответы и помечены одной звездочкой (*). Третья группа задач (без решений и ответов) предназначена для самостоятельного проведения студентами генетического анализа и закрепления знаний. Большое число однотипных задач позволяет предложить одновременно каждому студенту группы свою задачу.

В приложении к «Задачнику» даны необходимый для решения задач справочный материал и краткий словарь с описанием некоторых медицинских терминов, а также наследственных болезней, уродств и аномалий. В таблице генетического кода для каждой аминокислоты приведен только один кодон. Это сделано для того, чтобы облегчить поиск необходимого триплета или аминокислоты и избежать разно-. речивых ответов. В словаре наследственных болезней цифрами обозначены номера задач на описанный признак или патологию. Это должно помочь преподавателям клинических кафедр быстро подобрать необходимые для проведения конкретного занятия задачи.

При составлении задач использована литература по общей, медицинской и сельскохозяйственной генетике. В большинстве случаев даны ссылки на автора. Иногда такие ссылки вызваны тем, что в разных источниках имеются расхождения в трактовке характера наследования того или иного признака. Широко распространенные приемы составления задач по наследованию абстрактных признаков, названных различными буквами латинского алфавита, не применялись, поэтому «Задачник» может быть использован и в качестве справочника.

Во втором издании расширены пояснительные тексты к отдельным разделам и параграфам с целью облегчения работы. В параграф «Явление сцепления признаков и крос синговер» введены задачи на составление хромосомных карт. - К V разделу добавлены задачи на составление родословных с изложением методов их построения. Раздел «Популяцион-ная генетика» пополнен задачами на анализ множественных аллелей. В ряде задач уточнены формулировки. Изменена таблица генетического кода в соответствии с установившимися к настоящему времени представлениями. В связи с этим изменились решения и ответы к задачам по молекулярной

генетике.

Авторы

Раздел I молекулярная генетика

Молекулярная генетика исследует процессы, связанные с наследственностью, на молекулярном уровне. Ген — это участок молекулы дезоксирибонуклеиновой кислоты (ДНК), ответственный за формирование какого-то определенного признака. Однако ген не превращается в признак, и от гена до признака существует серия промежуточных реакций. Ген определяет лишь первичную структуру белка, т. е. последовательность расположения в нем аминокислот, от которой и зависит его функция. Белки-ферменты управляют биохимическими реакциями в организме. Для каждой реакции существует свой специфический белок-фермент. Ход биохимических реакций обусловливает проявление того или иного признака. Например, если у человека есть ген, ответственный за присоединение иода к тирозину, то будет нормально синтезироваться гормон щитовидной железы тироксин, если же этого гена нет, то иод не сможет присоединиться к тирозину, гормон не будет синтезироваться и человек будет страдать тяжелейшим заболеванием.

Таким образом, функцию гена можно представить следующей схемой: ген -> белок-фермент -> биохимическая реакция - признак.

В молекулярной генетике наиболее изучена первая ступень этой цепи — каким образом ген управляет формированием специфических белков.'

Молекула ДНК — полимер, состоящий из двух цепочек нуклеотидов. Каждый нуклеотид состоит из азотистого основания, моносахарида дезоксирибозы и остатка фосфорной кислоты. Азотистые основания в ДНК бывают четырех типов: аденин (А), тимин (Т), гуанин (Г) и цитозин (Ц). Вдоль нити ДНК азотистые основания прочно связаны между собой через моносахарид и остаток фосфорной кислоты, между цепочками — через водород. В общей схеме ДНК своим строением напоминает лестницу (рис. 1).

Между двумя цепочками азотистые основания располагаются строго закономерно: аденин всегда против тимина, гуанин — против цитозина. Аденин комплементарен тимину, гуанин — цитозину. Расположение азотистых оснований вдоль цепочки может быть разнообразным, но всегда строго специфичным для конкретного случая. Именно в этом чередовании азотистых оснований закодирована последовательность аминокислот в белковой молекуле, а вместе с тем и специфичность самого белка.

Место положения каждой аминокислоты в белковой цепи предопределяется триплетами, т. е. тремя рядом стоящими азотистыми основаниями в одной из цепочек ДНК. Расшифровка же кода осуществляется с помощью рибонуклеиновых кислот (РНК).

5

Весь процесс расшифровки начинается с синтеза информационной РНК (иРНК). Информационная РНК — полимер, состоящий из одной цепочки нуклеотидов. В состав ее нуклеотидов тоже входят азотистые основания, моносахарид рибоза и остаток фосфорной кислоты. Азотистых оснований в РНК также четыре: аденин, урацил (У), гуанин, цитозин.

Синтез иРНК происходит на участке одной из цепочек ДНК, который называется структурным геном. Построение ее осуществляется таким образом, что комплементарные азотистые основания РНК встают против соответствующих азотистых оснований ДНК, при этом урацил комплементарен аденину. Например, если цепь ДНК, кодирующая какой-то полипептид, начинается: аденин — цитозин — цитозин — аденин — тимин — аденин, то иРНК будет, построена соответственно: урацил — гуанин — гуанин — урацил — аденин — урацил (рис. 2). иРНК копирует чередование азотистых оснований ДНК, но как бы в негативном изображении. Этот процесс называется транскрипцией. Естественно, что иРНК копирует не только чередование азотистых оснований ДНК, но и триплетов. Триплеты иРНК называются кодонами.

Следующий этап расшифровки кода происходит в рибосомах, где осуществляется составление полипептидной цепи из аминокислот, т. е. сам синтез белка. В этом процессе участвуют транспортные РНК (тРНК), функция которых состоит в том, чтобы доставить аминокислоты к рибосоме и найти им свое место в полипептидной цепи, предусмотренное кодом.

В схеме строения тРНК важно выделить два активных центра (рис. 3). Один — «свободный» триплет, или антикодон, второй — место прикрепления аминокислоты. Для каждой аминокислоты существует своя тРНК. Основные отличия между тРНК состоят в строении антикодона: у каждой аминокислоты тРНК имеет свой свободный триплет.

Сборка полипептидной цепи происходит по следующей схеме. Синтезированная в ядре иРНК выходит в цитоплазму и пр„. соединяется своим концом к рибосоме. С места контакта начинается

6

отсчет триплетов. К рибосоме жеподходят тРНК. Первая из нихбудет та, антикодон которой комплементарен первому триплетуиРНК. В нашем примере на рис. 2,считая точку отсчета триплетовслева, первой подойдет тРНКс аминокислотой триптофан.

Аминокислота остается на рибосоме, а иРНК продвигается вперед на один триплет. Следующая тРНК подойдет к рибосоме с аминокислотой тирозин. Триптофан соединяется с тирозином, а иРНК продвигается еще на один триплет. И так далее, до конца нити иРНК. Расстановка аминокислот в цепочку соответственно триплетам называется трансляцией.

Здесь уместно напомнить, что, если произойдет какая-либо ошибка в считывании триплетов, изменится весь состав белка. Так, если в нашем примере (см. рис. 2), отсчет триплетов начнется не с первого, стоящего слева урацила, а с гуанина, то первый

кодон будет уже не УГГ, а ГГУ, и первой аминокислотой в полипептиде станет не триптофан, а глицин. Изменятся все последующие триплеты, соответственно порядок аминокислот и весь полипептид. Тот же результат будет, если нарушится порядок транскрипции, выпадет из цепи ДНК хотя бы один нуклеотид, добавится нуклеотид или соседние нуклеотиды поменяются местами. Это и есть одна из форм генных мутаций:

Таким образом, зная первичную структуру белка, можно расшифровать строение участка ДНК, кодирующего этот белок, и наоборот, зная строение участка ДНК или изменения в нем, можно предусмотреть строение кодируемого им белка или изменения в нем.

Предлагаемые задачи рассчитаны главным образом на расшифровку структуры белка по известным данным о строении ДНК и обратный анализ с помощью таблицы кодирования аминокислот, приведенной в приложении (табл. 1). В целях облегчения усвоения основных принципов таблица генетического кода дана в упрощенном виде. Однако надо иметь в виду, что кодирование каждой аминокислоты может осуществляться не только теми триплетами, которые приведены в таблице, но и еще двумя-тремя другими.

Задачи

**1. Полипептид состоит из следующих аминокислот: валин — аланин — глицин - лизин — триптофан - валин —серии — глутаминовая кислота.

Определите структуру участка ДНК, кодирующего указанный полипептид.

7

2. Полипептид состоит из следующих аминокислот: аланин — цистеин — гистидин — лейцин — метионин — тирозин,

Определите структуру участка ДНК, кодирующего эту полипептидную цепь.

3. Аспарагин — глицин — фенилаланин — пролин — треонин — аминокислоты, последовательно составляющие полипептид.

Определите структуру участка ДНК, кодирующего данный полипептид.

**4. Первые 10 аминокислот в цепи Б инсулина: фенилаланин — валин - аспарагиновая кислота — глутамин — гистидин — лейцин — цистеин — глицин— серии — гистидин.

Определите структуру участка ДНК, кодирующего эту часть цепи инсулина.

*5. Начальный участок цепи А инсулина представлен следующими пятью аминокислотами: глицин — изолейцин — валин - глутамин - глутамин.

Определите структуру участка ДНК, кодирующего эту часть цепи инсулина.

6. В цепи рибонуклеазы поджелудочной железы один из полипептидов имеет следующие аминокислоты: лизин — аспарагиновая кислота — глицин - треонин - аспарагиновая кислота — глутаминовая кислота — цистеин.

Определите иРНК, управляющую синтезом указанного полипептида.

*7. Одна из цепей рибонуклеазы поджелудочной железы состоит из следующих 14 аминокислот: глутамин — глицин — аспарагиновая кислота — пролин — тирозин - валин — пролин — валин - гистидин - фенилаланин — аспарагин - аланин - серии — валин.

Определите структуру участка ДНК, кодирующего эту часть цепи рибонуклеазы.

8. Одна из цепей глюкагона имеет следующий порядок аминокислот: треонин - серии — аспарагин — тирозин - серии — лизин — тирозин.

Определите строение участка ДНК, кодирующего эту часть цепи глюкагона.

**9. Участок молекулы ДНК, кодирующий часть полипептида, имеет следующее строение: АЦЦАТАГТЦЦААГГА.

Определите последовательность аминокислот в полипептиде.

*10. При одной из форм синдрома Фанкони (нарушение образования костной ткани) у больного с мочой выделяются аминокислоты, которым соответствуют следующие триплеты иРНК: ААА, ЦГУ, ГАА, АЦУ, ГУУ, УУА, УГУ, УАУ.

8

Определите, выделение каких аминокислот с мочой характерно для синдрома Фанкони.

*11. У человека, больного цистинурией (содержание в моче большего, чем в норме, числа аминокислот), с мочой выделяются аминокислоты, которым соответствуют следующие триплеты иРНК: УЦУ, УГУ, ГЦУ, ГГУ, ЦАГ, ЦГУ, ААА. У здорового человека в моче обнаруживается аланин, серии, глутаминовая кислота и глицин.

  1. Выделение каких аминокислот с мочой характерно длябольных цистинурией ?

  2. Напишите триплеты, соответствующие аминокислотам,имеющимся в моче здорового человека.

**12. Как изменится структура белка, если из кодирующего его участка ДНК - ААТАЦАТТТАААГТЦ удалить пятый и 13-й слева нуклеотиды?

  1. Какие изменения произойдут в строении белка, еслив кодирующем его участке ДНК - ТААЦАААГААЦААААмежду 10-м и 11-м нуклеотидами включить цитозин, между13-м и 14-м — тимин, а на конце прибавить еще одинаденин ?

  2. Участок молекулы ДНК, кодирующий полипептид,имеет в норме следующий порядок азотистых оснований:ААААЦЦААААТАЦТТАТАЦАА. Во время репликации третий слева аденин выпал из цепи.

Определите структуру полипептидной цепи, кодируемой данным участком ДНК, в норме и после выпадения аде-нина.

*15. Участок цепи белка вируса табачной мозаики состоит из следующих аминокислот: серии - глицин - серин— изолейцин — треонин — пролин — серии. В результате воздействия на иРНК азотистой кислотой цитозин РНК превращается в гуанин.

Определите изменения в строении белка вируса после воздействия на иРНК азотистой кислотой. При ■ этом имейте в виду, что место положения в цепи серина может определять не только указанный в таблице кода триплет УЦУ, но и АГУ.

16. Четвертый пептид в нормальном гемоглобине (гемоглобин А) состоит из следующих аминокислот: валин — гистидин — лейцин — треонин — пролин — глутаминовая кислота — глутаминовая кислота — лизин.

1. У больного с симптомом спленомегалии при умеренной анемии обнаружили следующий состав четвертого пептида : валин — гистидин — лейцин — треонин — пролин — лизин — глутаминовая кислота — лизин.

9

Определите изменения, произошедшие в ДНК, кодирующей четвертый пептид гемоглобина, после мутации.

2. У больного серповидноклеточной анемией состав аминокислот четвертого пептида гемоглобина следующий' валин-гистидин — лейцин — треонин — пролин — валин - глутаминовая кислота — лизин.

Определите изменения в участке ДНК, кодирующем четвертый пептид гемоглобина, приведшие к заболеванию.

17. В четвертом пептиде нормального гемоглобина А шестая и седьмая позиции ' представлены двумя одинаковыми аминокислотами: глутаминовая кислота — глутаминовая кислота. У других форм гемоглобина произошли следующие замещения.

Определите структуру участков ДНК, кодирующих шестую и седьмую позиции четвертого пептида, для всех пяти форм гемоглобина.

*18. В настоящее время известно много редких форм гемоглобина, у которых в результате мутаций произошло замещение той или иной аминокислоты в а-цепи.

/. В а-цепи нормального гемоглобина А пятая и шестая аминокислоты представлены аланином. У гемоглобина Торонто пятая аминокислота аланин заменена аспарагином, у гемоглобина Париж шестая аминокислота аланин заменена аспарагином.

Определите участок ДНК, кодирующий пятую и шестую аминокислоты а-цепи, для нормального гемоглобина А и для гемоглобииов Торонто и Париж.

2. В а-цепи нормального гемоглобина А 15-я аминокислота представлена глицином, 16-я -лейцином. У гемоглобина Интерлакен - Оксфорд 15-я аминокислота глицин заменена аспарагином, у гемоглобина J 16-я аминокислота лейцин заменена глутамином.

I Позиция - порядковый номер аминокислоты в полипептиде.

10

Определите участок ДНК, кодирующий 15-ю и 16-ю аминокислоты а-цепи, у нормального гемоглобина и у обоих измененных.

19. Известно 26 форм гемоглобина, у которых произошла замена той или иной аминокислоты в 0-цепи (В. П. Эф-роимсон, 196$). В таблице приведены некоторые замещения.

Напишите изменения в триплетах ДНК, приведших к изменениям гемоглобина.

20. В цепи А инсулина лошади аминокислоты в позиции 6—11 имеют следующий состав: цистеин — цистеин — треонин — глицин — изолейцин — цистеин. У быка в этой цепи 8-ю позицию занимает аланин, 9-ю — серии, 10-ю — валин.

Определите строение участка ДНК, кодирующего эту часть цепи инсулина, у лошади и быка.

**21. Начальный участок цепи В инсулина представлен следующими 10 аминокислотами: фенилаланин — валин — аспарагиновая кислота — глутамин — гистидин — лейцин — цистеин — глицин — серии — гистидин.

Определите количественные соотношения аденин + тимин и гуанин + цитозин в цепи ДНК, кодирующей этот участок инсулина.

22. Инсулин состоит из А к В цепи, включающих 51 аминокислоту. Однако состав инсулина лошади, быка и барана несколько отличен. Число различных аминокислот в молекуле инсулина этих животных приведено ниже.

11

Определите количественные отношения аденин + тимин и гуанин + цитозин в цепи ДНК, кодирующей инсулин, у трех видов животных.

23, Четвертый пептид гемоглобинов включает восемь аминокислот. Количественный состав их в различных формах гемоглобина приведен ниже.

Определите количественные соотношения аденин + тимин и гуанин + цитозин в участке ДНК, кодирующем четвертый полипептид, для пяти форм гемоглобина.

24. Рибонуклеаза поджелудочной железы быка имеет следующий количественный состав аминокислот:

12

Определите количественные соотношения аденин + тимин и гуанин + цитозин в участке цепи ДНК, кодирующем рибонуклеазу.

25. Исследования показали, что 34% общего числануклеотидов данной иРНК приходится на гуанин, 18% —наурацил, 28%-на цитозин и 20% -на аденин.

Определите процентный состав азотистых оснований двухцепочечной ДНК, слепком с которой является указанная иРНК.

26. Известно, что расстояние между двумя соседниминуклеотидами в спирализованной молекуле ДНК, измереннойвдоль оси спирали, составляет 34.10 м.

Какую длину имеют структурные гены, определяющие молекулу нормального гемоглобина, включающего 287 аминокислот?

27. Какую длину имеет часть молекулы ДНК, кодирующаяинсулин быка, если известно, что молекула инсулина быкаимеет 51 аминокислоту, а расстояние между двумя соседниминуклеотидами в ДНК равно 34-10"" м?

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]