Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Лекции по ВЭР.doc
Скачиваний:
10
Добавлен:
27.08.2019
Размер:
33.61 Mб
Скачать

3.5. Охлаждение конструктивных элементов высокотемпературных установок

В высокотемпературных установках многие конструктивные элементы находятся в зонах высоких температур, и надежная их работа обеспечивается системами принудительного охлаждения. Различают водяное и испарительное охлаждение.

Рис. 33. Схемы водяного охлаждения конструктивных элементов:

1 – теплообменная поверхность; 2 – насос; 3  циркуляционный насос;

4 – подпиточный насос; 5  градирня

Водяное охлаждение осуществляется либо проточной, либо по оборотной схемам (рис. 32). Температура воды на выходе не должна превышать ~40 С из–за опасности образования накипи. Незначительный нагрев воды (на 10-15 °С) требует очень большого расхода воды. По конструктивным признакам можно выделить два типа охлаждаемых элементов: коробчатые и трубчатые. В полых коробчатых элементах скорость движения потока в несколько раз ниже, чем в подводящих теплоноситель трубах. При охлаждении коробчатых элементов коэффициент теплоотдачи от стенки к воде не зависит от скорости воды и может быть рассчитан по формуле

, (60)

где  разность температур стенки охлаждаемого элемента и воды.

При охлаждении водой трубчатых элементов коэффициент теплоотдачи рассчитывается как

. (61)

Для воды   64,8 Вт/(м2К); =3,54;  = 988,1 кг/м3;  = 676,910-4 Н/м;    = 0,68510-4 (при Р = 1105 Па, t = 50 С). Тогда для трубы 57/3 внутренний диаметр равен и при скорости число Рейнольдса составит , а коэффициент теплоотдачи Вт/(м2К).

Следует отметить следующие недостатки водяного охлаждения:

1. Низкая температура охлаждающей воды исключает возможность использования теплоты, уносимой водой (воду сбрасывают в канализацию либо охлаждают в градирнях).

2. Большие расходы воды, до 500 т/ч на 1 агрегат.

Испарительное охлаждение

Сущность испарительного охлаждения (рис. 34) заключается в охлаждении конструктивных элементов печей химически очищенной водой, причем отводимая от конструктивных элементов теплота затрачивается на испарение воды.

Рис. 34. Схема испарительного охлаждения:

1  Теплообменная поверхность; 2  циркуляционный насос;

3 – подпиточный насос; 4 – барабан

Охлаждаемые элементы присоединены двумя трубами к барабану-сепаратору, в котором пар отделяется от воды. Возможно применение естественной и принудительной циркуляции воды. Отводимая теплота используется на производство пара в количестве, кг/с,

, (62)

где Q  отводимое количество теплоты; i˝ и iпв  энтальпии насыщенного пара и питательной воды, кДж/кг.

Испарительное охлаждение имеет следующие преимущества:

  1. Уменьшение расхода воды.

  2. Использование химводоподготовки и уменьшение накипеобразования обеспечивает более низкое значение температуры охлаждаемых стенок.

  3. Полезно используется теплота, отведенная от агрегата.

Рис. 35. Влияние накипи на эффективность испарительного охлаждения

Тепловосприятие поверхностей: в доменной печи достигают 500 кВт/м2, в мартеновской 800 кВт/м2, в нагревательных печах до 70 кВт/м2. Столь высокие значения тепловых потоков обусловлены интенсивной радиацией высокотемпературного факела, расплавленных масс металла и шлака.

Температура охлаждаемой стенки определяется как

. (63)

Коэффициент теплоотдачи от стенки к кипящей воде приблизительно равен  кВт/(м2К). При отсутствии накипи, толщине стенки  м и при коэффициенте теплопроводности стали Вт/(мК) комплекс , а температура стенки при  кВт/(м2К) превысит температуру теплоносителя на . При появлении накипи толщиной в  1 мм и при теплопроводности накипи  Вт/(мК) превышение температуры стенки над температурой теплоносителя составит уже . Таким образом, слой накипи даже в 1 мм может привести к пережогу труб либо кессонов.

Стойкость подверженной наибольшему тепловому воздействию поверхности кессона можно повысить за счет создания на наружной поверхности кессона гарнисажного слоя. Для этого используют предварительно ошипованные кессоны, с использованием огнеупорной набивки между шипами; теплопроводность такого слоя составляет λ = 1-5 Вт/(м2К).