
- •Введение Методы изучения физиологии центральной нервной системы
- •Глава 1.Общая физиология возбудимых тканей
- •1.1.Основные состояния возбудимых тканей
- •1.2.Биоэлектрические явления
- •1.2.1.Мембранный потенциал, или потенциал покоя
- •1.2.3.Изменение возбудимости клетки во время развития одиночного цикла возбуждения.
- •1.3.Физиология нервных волокон.
- •1.3.1.Физиологические свойства нервных волокон:
- •1.3.2.Механизмы проведения возбуждения по нервам
- •1.3.3.Законы проведения возбуждения по нервному волокну
- •1.4.Физиология скелетных мышц
- •1.4.1.Физиологические свойства скелетных мышц
- •1.4.2.Виды мышечных сокращений
- •1.4.3.Режимы мышечных сокращений
- •1.4.4.Механизм мышечного сокращения.
- •Сократительные белки
- •1.5.Физиология синапсов
- •1.5.1.Физиология медиаторов.
- •1.5.2.Свойства синапса
- •1.5.3.Этапы синаптической передачи
- •Глава 2 Общая физиология центральной нервной системы
- •2.1.Клетки цнс
- •2.2.Основные функции нервной системы (табл.2.2.)
- •2.3.1.Классификация нервных центров
- •2.5.Координационная деятельность центральной нервной системы.
- •2.5.1. Принцип иррадиации возбуждений.
- •2.5.2. Принцип общего конечного пути.
- •2.5.3. Принцип доминанты.
- •2.5.4. Принцип обратной связи.
- •2.5.5. Принцип реципрокности (сопряженности).
- •2.5.6. Принцип субординации (соподчинения).
- •2.6.Торможение в цнс
- •2.6.1.Постсинаптическое торможение
- •2.6.2.Пресинаптическое торможение-
- •2.7. Спинномозговая (черепно-мозговая) жидкость
- •3.1.2.Рефлекторная функция.
- •3.2.2.Средний мозг
- •3.2.3.Промежуточный мозг
- •3.2.4.Мозжечок, или малый мозг,
- •3.2.5.Ретикулярная формация.
- •3.2.6.Базальные ганглии конечного мозга
- •3.2.7.Конечный мозг, или полушария большого мозга,
- •3.3.Медиаторные системы мозга.
- •3.4.Концепция структурно-функциональных блоков мозга а. Р. Лурия.
- •Глава 4. Вегетативная нервная система
- •4.1.Симпатическая часть вегетативной нервной системы.
- •Глава 5. Общие представления об эндокринных железах
- •5.1.Свойства гормонов, механизм их действия
- •5.2.Характеристика отдельных гормонов
- •5.2.1.Гормоны передней доли гипофиза
- •5.2.2.Гормоны средней и задней долей гипофиза
- •Гипоталамическая регуляция образования гормонов гипофиза
- •5.2.3.Гормоны эпифиза, тимуса, паращитовидных желез
- •Паращитовидные железы
- •5.2.4. Гормоны щитовидной железы. Йодированные гормоны. Тиреокальцитонин. Нарушение функции щитовидной железы
- •Роль йодированных гормонов:
- •5.2.5. Гормоны поджелудочной железы. Нарушение функции поджелудочной железы
- •5.2.6.Гормоны надпочечников.
- •Регуляция образования глюкокортикоидов.
- •Регуляция образования минералокортикоидов.
- •Значение адреналина и норадреналина
- •5.2.7.Половые гормоны. Менструальный цикл
- •5.3.Гипоталамус - высший центр эндокринной системы.
- •5.4. Стресс и стадии резистентности организма
- •Глава 6. Основные механизмы и принципы регуляции функций в организме.
- •6.1. Нервный механизм регуляции.
- •6.2.Регуляция с помощью метаболитов и гормонов.
- •6.3.Миогенный механизм регуляции.
- •6.4. Единство и особенности регуляторных механизмов.
- •6.5.Надежность регуляторных механизмов.
- •6.6. Типы регуляции.
- •Глава 7.Основные принципы регуляции мышечного тонуса и организации движений
- •7.1.Роль различных отделов цнс в регуляции мышечного тонуса
- •7.1.1.Роль спинного мозга
- •7.1.2.Роль ствола мозга, мозжечка и коры головного мозга
- •7.2.Рефлексы поддержания позы (установочные)
- •7.3.Роль различных отделов цнс в регуляции движений
- •7.3.1.Роль спинного мозга и подкорковых отделов цнс
- •7.3.2.Роль различных отделов коры больших полушарий
- •7.3.3.Нисходящие моторные системы
- •Глава 8. Регуляция психологически важных функций организма
- •8.1.Регуляция артериального давления
- •8.1.1.Регуляция минутного объема сердца
- •8.1.2. Регуляция сосудистого тонуса
- •Сосудосуживающие и сосудорасширяющие нервы.
- •Сосудодвигательный центр
- •Сосудосуживающие вещества
- •Сосудорасширяющие вещества
- •Вещества двоякого действия
- •8.2.Регуляция дыхания
- •8.3.Регуляция пищеварения
- •8.4.Регуляция водно-электролитного гомеостаза.
- •8.4.1.Регуляция объема крови и внеклеточной жидкости (волюморегуляция).
- •8.4.2. Регуляция осмотической концентрации плазмы крови (осморегуляция).
- •8.4.3. Регуляция кислотно-основного равновесия.
- •8.4.4. Регуляция артериального давления
- •8.5.Регуляция температуры тела
- •Оглавление
- •Глава 1.Общая физиология возбудимых тканей 6
- •1.1.Основные состояния возбудимых тканей 8
- •1.2.Биоэлектрические явления 8
- •Глава 2 Общая физиология центральной нервной системы 28
- •2.7. Спинномозговая (черепно-мозговая) жидкость 44
- •Глава 3.Частная физиология центральной нервной системы 45
- •3.1. Физиология спинного мозга. 45
- •3.1.1.Проводниковая функция 45
- •Глава 4. Вегетативная нервная система 67
- •Глава 5. Общие представления об эндокринных железах 72
- •Глава 6. Основные механизмы и принципы регуляции функций в организме. 98
- •Глава 7.Основные принципы регуляции мышечного тонуса и организации движений 103
- •Глава 8. Регуляция психологически важных функций организма 116
- •8.1.Регуляция артериального давления 116
2.5.6. Принцип субординации (соподчинения).
Основная тенденция в эволюции нервной системы проявляется в сосредоточении функций регуляции и координации в высших отделах ЦНС — цефализация функций нервной системы. В ЦНС имеются иерархические взаимоотношения — высшим центром регуляции является кора больших полушарий, базальные ганглии, средний, продолговатый и спинной мозг подчиняются ее командам. 2.5.7. Принцип компенсации функций.
ЦНС обладает огромной компенсаторной способностью, т.е. может восстанавливать некоторые функции даже после разрушения значительной части нейронов, образующих нервный центр (пластичность нервных центров). При повреждении отдельных центров их функции могут перейти к другим структурам мозга, что осуществляется при обязательном участии коры больших полушарий. У животных, которым после восстановления утраченных функций удаляли кору, вновь происходила их утрата.
2.6.Торможение в цнс
Усиление активности органа или отдела ЦНС называется возбуждением. Снижение активности (когда нейрон не способен к выработке нервных импульсов) называется торможением. Интегративные функции нервных центров обеспечиваются специфическими закономерностями во взаимодействии возбудительного и тормозного процессов, причем торможение часто играет ведущую роль в достижении координированной деятельности центральной нервной системы. Центральное торможение представляет собой особый нервный процесс, вызываемый возбуждением и проявляющийся в подавлений другого возбуждения.
Торможение всегда возникает как следствие возбуждения. Торможение в ЦНС открыл И.М.Сеченов (1863). В опыте на таламической лягушке он определял латентное время сгибательного рефлекса при погружении задней конечности в слабый раствор серной кислоты. Было показано, что время рефлекса значительно увеличивается, вплоть до полного прекращения рефлекса, если на зрительный бугор предварительно положить кристаллик поваренной соли. Открытие И.М.Сеченова послужило толчком для дальнейших исследований торможения в ЦНС. Различают первичное торможение, являющееся результатом активации особых тормозящих структур, действующих на возбудимую клетку и вызывающих в ней торможение как первичный процесс без предварительного возбуждения, и вторичное торможение, возникающее в клетке без действия на нее специфических тормозящих структур, а как следствие ее возбуждения, т.е. вторично. К первичному торможению относятся постсинаптическое торможение и пресинаптическое (разновидностью постсинатического являются возвратное и латеральное торможение), к вторичному — пессимальное и торможение вслед за возбуждением.
2.6.1.Постсинаптическое торможение
Этот вид торможения открыл Д.Экклс (1952) при регистрации потенциалов мотонейронов спинного мозга у кошки во время раздражения мышечных афферентов группы 1а. При этом оказалось, что в мотонейронах мышцы-антагониста регистрируются не деполяризация и возбуждение, а гиперполяризационный постсинаптический потенциал, уменьшающий возбудимость мотонейрона, угнетающий его способность реагировать на возбуждающие влияния.
Механизм постсинаптического торможения. Возбудимость клетки от ТПСП (гиперполяризационного постсинаптического потенциала) уменьшается, потому что мембранный потенциал возрастает, а критический уровень деполяризации (КУД) остается на прежнем уровне. ТПСП возникает под влиянием и аминокислоты глицина, и ГАМК — гамма-аминомасляной кислоты. В спинном мозге глицин выделяется особыми тормозными клетками (клетки Реншоу) в синапсах, образуемых этими клетками на мембране нейрона-мишени. Действуя на ионотропный рецептор постсинаптической мембраны, глицин увеличивает ее проницаемость для СL, при этом СL поступает в клетку согласно концентрационному градиенту вопреки электрическому градиенту, в результате чего развивается гиперполяризация. В бесхлорной среде тормозная роль глицина не реализуется.. При действии ГАМК на постсинаптическую мембрану ТПСП развивается в результате входа СL в клетку или выхода К+ из клетки.
Виды постсинаптического торможения
В основе классификации постсинаптического торможения лежит путь, по которому тормозная клетка вовлекается в ответную реакцию.
Прямое (афферентное, поступательное) торможение - возникает когда тормозная клетка получает импульсы от афферентного нейрона или от вышележащих отделов центральной нервной системы (рис. 3.13.).Такая разновидность торможения обеспечивает реципрокную иннервацию мышц-антагонистов и исключает несовместимые реакции.
Рис.2.11.
Возвратное (эфферентное) торможение - клетки Реншоу получают импульсы по коллатералям аксона эфферентного нейрона. Эфферентный нейрон образует аксон, который иннервирует скелетные мышцы. От этого аксона отходит ответвление, которое образует синапс на клетке Реншоу. Клетка Реншоу тормозит нейрон от которого получает нервный импульс(рис 2.).этот вид торможения предотвращает избыточное возбуждение нейронов и способствует ритмическому сокращению и расслаблению мышц, например, при ходьбе. Паралельное торможение (рис. 1. ) играет ту же роль, что и возвратное. Латеральное торможение (рис 3.) способствует формированию контрастного изображения, ограничивая поток импульсов, поступающих на периферию возбужденного нейрона. Этот вид торможения имеет большое значение в афферентных системах. Постсинаптическое торможение широко представлено в различных отделах ЦНС: в частности, глицин — медиатор постсинаптического торможения, кроме клеток Реншоу, обнаружен в стволе мозга. ГАМК-рецепторы найдены на нейронах гиппокампа, мозжечка, гипоталамуса, коры большого мозга, аксонах первичных афферентных клеток.